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WEYL TRANSFORM

and the

PHASE SPACE FORMALISM

Introduction. It would be consistent with the historical facts to assert that
“quantum mechanics is a child of the Hamiltonian formulation of classical
mechanics.” The original version of the theory proceeded, after all, from a
statement∮

p dx = nh : Planck-Bohr-Sommerfeld quantization condition

the intent of which was to identify “quantum mechanically allowed” trajectories
on classical phase space. Heisenberg’s uncertainty principle

∆x ·∆p � 1
2�

refers to a pair of variables which spring as twins from Hamiltonian mechanics.
And when Schrödinger wrote

Hψ = i�∂tψ with H ≡ H(x, p)
∣∣∣
p→(�/i)∂x

he assumed one to be already in possession of the Hamiltonian H(x, p) of the
classical system which one proposed to “quantize.” True, Planck’s “quantum
of action” refers to a concept S =

∫
L dt borrowed from Lagrangian mechanics

(from which Hamiltonian mechanics itself descended), but for several decades—
until brought into the sunshine in the late ’s by Feynman and Schwinger—
Lagrangian notions lived only in dark shadows of quantum theory.

Hamiltonian mechanics, in its simplest form, contemplates the motion of
points

{
xxx(t), ppp(t)

}
in 2n-dimensional phase space, while Schrödinger looked to
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the motion of a “point” ψ(xxx, t) in the ∞-dimensional space of nice functions
defined on n-dimensional configuration space. The formal disjunction is fairly
profound. If one has interest in the nest of problems which live at the classical/
quantum interface . . . in the comparative design of, and relationship between the
two theories . . . then it behooves one to try to minimize the element of formal
dissimilarity, to get the respective theories “into the same room together.” To
that end . . .

One might look, on the classical side, to Hamilton-Jacobi theory, where
the object is to develop properties of the solutions S(x, t) of

H(x, Sx) + St = 0

The classical/quantum bridge is established by a relation of the form

ψ(x, t) = e
i
�

S(x,t)

One holds then, in this hand and that, a pair of partial differential equations, in
fields S/ψ which range on the same set of independent variables. Good physics,
in rich variety, results when one rubs one against the other . . .but it is not the
physics that concerns me here.

Hamiltonian physics invites one to look not to the motion of individual
state points

{
x, p

}
but to sprinkle many state points onto phase space, and

watch the motion of the population (which is to say: watch the motion of the
underlying phase fluid)—to watch not the leaf but the lake, as revealed by many
floating leaves. That wholistic view is more abstract, but moderate abstraction
is a small price to pay to gain access to the conceptual apparatus of statistical
mechanics, chaos theory . . . and, as will emerge, quantum mechanics. How is
it accomplished? Let

{
x(t;x0, p0), p(t;x0, p0)

}
describe the present position of

the state point which at t = 0 resided at
{
x0, p0

}
; suppose, in other words, that

x(0;x0, p0) = x0

p(0;x0, p0) = p0

and
ẋ = +∂H/∂p ≡ Hp

p = −∂H/∂x ≡ Hx

We might write δ(x−x(t;x0, p0))·δ(p−p(t;x0, p0)) to describe the moving state
point as a moving “spike distribution.” To describe the dynamical evolution of
an arbitrary initial distribution P (x0, p0; 0) we evidently have

P (x, p; t) =
∫∫

δ(x− x(t;x0, p0)) · δ(p− p(t;x0, p0))P (x0, p0; 0) dx0dp0 (1)

Immediately ∫∫
P (x, p; t) dxdp =

∫∫
P (x0, p0; 0) dx0dp0 = 1 (2)

which expresses classical “conservation of probability.” The rate at which the
value of P (x, p; t) is seen to change by an observer riding with the flow is

d
dtP = Pxẋ + Ppṗ + Pt =

{
x∂x + p∂p + ∂t

}
· right side of (1) = 0 (3.1)
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so we have
∂
∂tP = [H, P ] (3.2)

Note the subtle distinction between the result just obtained and the equation

d
dtA = Axẋ + Apṗ = −[H, A ] (4)

which describes the rate at which a co-flowing observer sees the value of an
observable A(x, p) to change.1 The “Liouville equation” (3) can be interpreted
to be an expression of the “phase flow is isovolumetric” (more picturesquely:
“phase fluid is incompressible”).2

The Liouville equation—which when written out in detail reads

∂P
∂t

=
n∑

k=1

{
∂H
∂xk

∂P
∂pk
− ∂P

∂xk
∂H
∂pk

}
(5.1)

and has obviously the form (not of coupled non-linear ordinary differential
equations but) of a linear partial differential equation—presents Hamiltonian
dynamics in an elegantly compact, statistically predisposed nutshell. Let us, in
fact, assign to P (x, p; t) the attributes of a probability distribution:

P (x, p; t) � 0 and
∫∫

P (x, p; t) dxdp = 1 (5.2)

It then makes sense to speak of the “expected value” of the observable A(x, p):

〈A〉 =
∫∫

A(x, p)P (x, p; t) dxdp (5.3)

Equations (5) are structurally reminiscent of these equations fundamental to

1 Set A(x, p) = x else p to recover the canonical equations of motion. Observe
also that from [H, A ] = 0 it follows that A is conserved.

2 That, in turn, is an expression of the proposition that the H-generated flow
map is symplectic (therefore necessarily unimodular) but can be understood
quite simply as follows: Look to

x �→ x = x + τHp + · · ·
p �→ p = p − τHx + · · ·

Expansion of the Jacobian

J =
∣∣∣∣ xx xp

px pp

∣∣∣∣ =
∣∣∣∣ 1 + τHpx + · · · τHpp + · · ·
− τHxx + · · · 1− τHxp + · · ·

∣∣∣∣ = 1 + 0τ + · · ·

gives d
dtJ = 0.
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quantum mechanics:
i� ∂

∂tρρρ = [H , ρρρ ] (6.1)

trρρρ = 1 (6.2)

〈A〉 = trAρρρ (6.3)

An objective and accomplishment of the “phase space formulation of quantum
mechanics” is to render the association (5)↔ (6) clear and explicit. The bridge,
as will emerge, is provided by the fundamental linkage

[x, p ] = 1 ←→ [x , p ] = i� I

as reflected in properties of the “Weyl transform.”

Introduction to the Weyl transform. Assume the classical observable A(x, p) to
be Fourier transformable

A(x, p) =
∫∫

a(α, β) e
i
�
(αp+βx) dαdβ∣∣∣

and, with the aid of a(α, β), construct the operator-valued Weyl transform�
A =

∫∫
a(α, β) e

i
�
(αppp+β xxx ) dαdβ (7)

of A(x, p). Note that

A(x, p) real ⇐⇒ A self-adjoint (8)

since both conditions entail a∗(α, β) = a(−α,−β). So we have in (7) an explicit
rule of correspondence (see again (0–12)), a rule for associating quantum
observables with their classical counterparts.

Many of the attractive properties of the “Weyl correspondence” reflect
properties of the operators

E(α, β) ≡ e
i
�
(αppp+β xxx )

which I now summarize. Note first that

E(α, β) is unitary: E –1(α, β) = E+(−α,−β) = E+(α, β)

And that the simplest fruit of Campbell-Baker-Hausdorff theory3 supplies

E(α, β) =




e+ 1
2

i
�

αβ · e i
�

β xxx e
i
�

αppp : xp-ordered form

e−
1
2

i
�

αβ · e i
�

αppp e
i
�

β xxx : px-ordered form
(9.1)

3 See again (�73.6) in Chapter 0.
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and also these more elaborate identities:

E(α′, β′)E(α′′, β′′) = e
1
2

i
�
(α′β′′−β′α′′) · E(α′ + α′′, β′ + β′′) (9.2)

= e
i
�
(α′β′′−β′α′′) · E(α′′, β′′)E(α′, β′) (9.3)

E –1(α′′, β′′)E(α′, β′)E(α′′, β′′) = e
i
�
(α′β′′−β′α′′) · E(α′, β′) (9.4)

Much hinges on the circumstance that4

trE(α, β) = hδ(α)δ(β) (10)

from which it follows in particular that the operators E(α, β) and E(α′, β′) are
tracewise orthogonal in the sense that

tr
{
E(α′, β′)E+(α, β)

}
= hδ(α′ − α)δ(β′ − β) (11)

It follows that if—as at (7)— A is presented in the form

A =
∫∫

a(α′, β′)E(α′, β′) dα′dβ′

then a(α, β) = 1
h tr

{
A E+(α, β)

}
(12)

We are, in other words, in possession now of an operator analog of the Fourier
integral theorem

A =
∫∫ {

1
h tr

[
A E+(α, β)

]}
E(α, β) dαdβ : all A (13)

4 Work from this variant of (9.1):

E(α, β) = e
1
2

i
�

αppp e
i
�

β xxx e
1
2

i
�

αppp

Pass, as a matter of momentary convenience into the x-representation, writing

trE(α, β) =
∑

n

∫
ψ∗

n(x)e
1
2 α d

dx e
i
�

βxe
1
2 α d

dx ψn(x) dx

where ψn(x) = (x|n), and
{
|n)

}
is complete orthonormal. Then

=
∑

n

∫
ψ∗

n(x)e
1
2 α d

dx e
i
�

βxψn(x + 1
2α) dx

=
∑

n

∫
ψ∗

n(x)e
i
�

β(x+ 1
2 α)ψn(x + α) dx

=
∫ {∑

n

ψ∗
n(ξ − 1

2α)ψn(ξ + 1
2α)

}
e

i
�

βξ dξ

= δ(α) · hδ(β)

where in the final step we have used completeness
∑

ψn(x)ψ∗
n(y) = δ(x− y)

and Fourier’s
∫

e
i
�

βξ dξ = hδ(β).
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and in position to do Fourier analysis on operators. The Weyl correspondence
is seen in this light to arise from an identification of the form

Fourier analysis on functions A(x, p)
�

Fourier analysis on operators A

An operator ordering calculus. Returning to (7) with (9.1) we have

A =
∫∫

a(α, β) e+ 1
2

i
�

αβ · e i
�

β xxx e
i
�

αppp dαdβ

=
xxx

[ ∫∫
a(α, β) e+ 1

2
i
�

αβ · e i
�

βxe
i
�

αp dαdβ
]

ppp

=
xxx

[
Axp(x, p)

]
ppp

with Axp(x, p) = exp
{

+ 1
2

�

i
∂2

∂x∂p

}
A(x, p) (14.1)

and by a similar argument

=
ppp

[
Apx(x, p)

]
xxx

with Apx(x, p) = exp
{
− 1

2
�

i
∂2

∂x∂p

}
A(x, p) (14.2)

The implication is that we can proceed

A(x, p) −−−−−−−−−−−−→
Weyl

A

by first constructing Axp(x, p) else Apx(x, p) and then making the appropriate
ordered substitutions x→ x , p→ p . The procedure requires that we compute
no Fourier transform, and can be performed even when A(x, p) does not possess
a Fourier transform, so serves to extend the reach of the Weyl formalism. Look,
for example, to the polynomial

A(x, p) ≡ xp⇒




Axp = xp + 1
2

�

i ⇒ A = x p + 1
2

�

i I

Apx = xp− 1
2

�

i ⇒ A = p x − 1
2

�

i I

The alternative descriptions of A are equivalent by [x , p ] = i� I , and when taken
in combination give a result which can be expressed

xp −−−−−−−−−−−−→
Weyl

1
2 (x p + p x)

Generally, (14) supplies

Axp(x, p) = A(x, p) + power series in �

but in the example a symmetrization technique has made it possible to eliminate
all exposed � ’s from the description of A ; such an objective can, of course,
always be accomplished by substitutions � �→ −i(x p − p x).
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Equations (14) can also be used to efficiently reverse the ordering of ordered
expressions, the essential point being that

Axp(x, p) = exp
{

+ �

i
∂2

∂x∂p

}
Apx(x, p) (15)

Looking back, by way of illustration, to our recent example, we find

exp
{

+ �

i
∂2

∂x∂p

}(
xp− 1

2
�

i

)
=

(
xp + 1

2
�

i

)

as required.

Operator products & commutators. Proceeding from

A(x, p) −−−−−−−−→
Weyl

A =
∫∫

a(α′ , β′ )E(α′ , β′ ) dα′ dβ′

B(x, p) −−−−−−−−→
Weyl

B =
∫∫

b(α′′, β′′)E(α′′, β′′) dα′′dβ′′

we ask: What is the Weyl transform of AB? Straightforward calculation5

supplies

AB =
∫∫∫∫

a(α′, β′)b(α′′, β′′)e
1
2

i
�
(α′β′′−β′α′′) E(α′ + α′′, β′ + β′′) dα′dβ′dα′′dβ′′

which is evidently the Weyl transform of

∫∫∫∫
e

1
2

i
�
(α′β′′−β′α′′) · a(α′, β′)b(α′′, β′′)e

i
�
[(α′+α′′)p+(β′+β′′)x]dα′dβ′dα′′dβ′′

= exp
{

1
2

�

i

[(
∂
∂p

)
A

(
∂
∂x

)
B
−

(
∂
∂x

)
A

(
∂
∂p

)
B

]}
A(x, p)B(x, p) (16)

= A(x, p)B(x, p) + power series in �

Since on the one hand

AB = 1
2 (AB + BA) + 1

2 (AB − BA)

while on the other

exp
{

1
2

�

i

[(
∂
∂p

)
A

(
∂
∂x

)
B
−

(
∂
∂x

)
A

(
∂
∂p

)
B

]}
= exp

{
i�

2

[(
∂
∂x

)
A

(
∂
∂p

)
B
−

(
∂
∂x

)
B

(
∂
∂p

)
A

]}
= cos

{
�

2

[
etc.

]}
+ i sin

{
�

2

[
etc.

]}

we are brought to the pretty conclusion that

5 See quantum mechanics (), Chapter 2, p. 27 for the tedious details.
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cos
{

�

2

[(
∂
∂x

)
A

(
∂
∂p

)
B
−

(
∂
∂x

)
B

(
∂
∂p

)
A

]}
AB −−−−−→

Weyl

1
2 (AB + BA) (17.1)

i sin
{

�

2

[(
∂
∂x

)
A

(
∂
∂p

)
B
−

(
∂
∂x

)
B

(
∂
∂p

)
A

]}
AB −−−−−→

Weyl

1
2 (AB − BA) (17.2)

The latter of the preceding equations sets up this relation between quantum
mechanical commutators and classical Poisson brackets:

commutator [A , B ] −−−−−→
Weyl

i�
{

Poisson bracket [A, B ] + terms of order �
2
}

Which is satisfying, yet inconsistent with Dirac’s stipulation6 that

[A , B ]←→ i� [A, B ]

should be precise (no correction terms). From (17.1) we obtain

1
2 (AB + BA) −−−−−→

Weyl
AB − 1

2!

(
�

2

)2
{

AxxBpp − 2AxpBpx + AppBxx

}
+ · · ·

which in the case B = A yields a result

A2 −−−−−→
Weyl

A2 −
(

�

2

)2
{

AxxApp −AxpApx

}
+ · · · �= A2

which is inconsistent with von Neumann’s stipulation7 that

A −→ A =⇒ f(A) −→ f(A)

But the principles advanced by Dirac and von Neumann are readily shown
to be inconsistent, and both are susceptible to the criticism that (except in
the simplest cases) the A -operator which they assign to A(x, p) is non-unique.
Many alternatives to (variants of) Weyl’s procedure have been proposed,8 but
none offers distinct advantages, except in isolated circumstances. Maybe
someday it will become possible to resolve the matter on observational grounds.
In the meantime, I base my tentative embrace of Weyl’s procedure on the
fact that it leads with swift elegance to what seem to me to be some valuable
insights. I am content to live in violation of Dirac’s/von Neumann’s (faulty, and
not very deeply motivated) principles on grounds that quantum mechanics is a
profoundly strange subject, entitled to its surprising quirks . . . and one cannot
reasonably expect to get from the beginning to the end without encountering
wrinkles.

6 Principles of Quantum Mechanics (4th edition ), Chapter 4.
7 Mathematical Foundations of Quantum Mechanics (), pp. 313 et seq .
8 For a nice review of the older literature on this subject, see J. R. Shewell,

“On the formation of quantum mechanical operators,” AJP 27, 16 (1959). See
also “Correspondence rules via Feynmanism” in transformational physics
& physical geometry (–), which contains many references to the
more recent literature.
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Finally, we bring (10) to the equation that gave (16) and obtain

tr
{
AB

}
= h

∫∫∫∫
a(α′, β′)b(α′′, β′′)e

1
2

i
�
(α′β′′−β′α′′)

· δ(α′ + α′′)δ(β′ + β′′) dα′dβ′dα′′dβ′′

= h

∫∫
a(α, β)b(−α,−β) dαdβ

= h 1
h4

∫∫∫∫∫∫
A(x′, p′)B(x′′, p′′)e−

i
�
(αp′+βx′)

· e+ i
�
(αp′′+βx′′) dαdβdx′dp′dx′′dp′′

= 1
h3

∫∫∫∫
A(x′, p′)B(x′′, p′′)hδ(p′′ − p′)hδ(x′′ − x′) dx′dp′dx′′dp′′

= 1
h

∫∫
A(x, p)B(x, p) dxdp (18)

The beauty of this result lies in the circumstance that it permits the quantum
mechanical statement (6.3) to be cast in the notation of its classical statistical
counterpart (5.3). For suppose

A −−−−−→
Weyl

A(x, p) and ρρρ −−−−−→
Weyl

hP (x, p) (19)

Then (18) can be used to write

〈A〉 = trAρρρ =
∫∫

A(x, p)P (x, p) dxdp (20)

The Wigner distribution. Let us, for the moment, suppose that ρρρ refers to a pure
state: ρρρ = |ψ)(ψ|. Working from a slight variant of (13), we have

|ψ)(ψ| = 1
h

∫∫
(ψ|E(α, β)|ψ) e−

i
�
(αppp+β xxx ) dαdβ∣∣

Weyl�
hPψ(x, p) = 1

h

∫∫
(ψ|E(α, β)|ψ) e−

i
�
(αp+βx) dαdβ (21)

Pass to the x-representation and argue as we did4 in the derivation of (10), to
obtain

(ψ|E(α, β)|ψ) =
∫

ψ∗(y) e
i
�

β(y+ 1
2 α)ψ(y + α) dy

=
∫

ψ∗(z − 1
2α) e

i
�

βzψ(z + 1
2α) dz

whence

hPψ(x, p) = 1
h

∫∫∫
ψ∗(z − 1

2α) e−
i
�

αp ψ(z + 1
2α) e

i
�

β(z−x) dβdzdα

= 1
h

∫∫∫
ψ∗(z − 1

2α) e−
i
�

αp ψ(z + 1
2α)hδ(z − x) dzdα

=
∫

ψ∗(x− 1
2α) e−

i
�

αp ψ(x + 1
2α) dα
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which by simple change of variable α �→ ξ = − 1
2α becomes

Pψ(x, p) = 2
h

∫
ψ∗(x + ξ) e2 i

�
pξ ψ(x− ξ) dξ (22.1)

Had we elected to work in the p -representation we would have been led by the
same argument to

= 2
h

∫
Ψ∗(p− ζ) e2 i

�
xζ Ψ(p + ζ) dζ (22.2)

where Ψ(p) = (p |ψ); alternatively, we might have worked from (22.1) with the
assistance of (0–82): (x|ψ) = (1/

√
h)

∫
e(i/�)px(p |ψ) dp.

At (22) we have obtained the famous “Wigner distribution function,” which
Wigner, in the course of some early work concerned with the relation of quantum
to classical statistical mechanics,9 was content simply to pluck from his hat,10

but which we see now is intimately associated with Weyl’s procedure.11 I
turn now to an account of some of the striking general properties of Wigner’s
unpromising-looking construction.

The density matrix ρρρ is self-adjoint, so its Weyl transform is necessarily
real , and in fact the reality of Pψ(x, p), as described at (22), is manifest.

In (20) set A = I to obtain

(ψ|ψ) = trρρρ =
∫∫

Pψ(x, p) dxdp = 1 (23)

From (22) we are led to “marginal distributions”
∫

Pψ(x, p) dp = |ψ(x)|2 (24.1)∫
Pψ(x, p) dx = |Ψ(p)|2 (24.2)

which could not be more satisfactory, and from which (23) can be recovered as
a corollary.

9 “On the quantum correction for thermodynamic equilibrium,” Phys. Rev.
40, 749 (1932).

10 Or perhaps from Leo Szilard’s hat. In a footnote, Wigner reports that
“This expression was found by L. Szilard and the present author some years
ago for another purpose,” but gives no indication of what that “other purpose”
might have been, and cites no reference.

11 Recognition of the Wigner-Weyl connection is usually attributed to
J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Camb. Phil.
Soc. 45, 92 (1949), but clear anticipations of many of Moyal’s results can be
found in J.H.Groenwold, “On the principles of elementary quantum mechanics,”
Physica 12, 405 (1946).
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Concerning that most recent use of quotation marks: Equations (24) would
describe literal marginal distributions if Pψ(x, p) were itself a distribution, but
in fact it is not. Wigner’s function enters into the equations of the phase space
formalism as though it were a classical distribution function, but can—and
typically does—assume negative values.12 For this reason Pψ(x, p) is sometimes
called a “quasi-distribution.” The point is most readily established by example.
The ground state and first two excited states of a harmonic oscillator can be
described13

ψ0(x) = 1√
a
√

2π
e−

1
4 κ

2

ψ1(x) = 1√
a
√

2π
e−

1
4 κ

2 · 1√
1!

κ

ψ2(x) = 1√
a
√

2π
e−

1
4 κ

2 · 1√
2!

(κ 2 − 1)

with a ≡
√

�/2mω. Working from (22.1) with the assistance of Mathematica—
later we will develop analytical means to obtain such results—we find that the
Wigner transforms of those wave functions can be described

P0(x, p) = + 2
he−

1
2E

P1(x, p) = − 2
he−

1
2E(1− E)

P2(x, p) = + 2
he−

1
2E(1− 2E + 1

2E
2)


 (25)

where E ≡ κ
2 + ℘2 is “dimensionless energy,” interpretable as squared radius

on the (κ, ℘)-coordinatized phase plane. The functions (25) are plotted in
Figure 1, where regions of negativity are evident.

The essence of the Heisenberg uncertainty principle is very neatly conveyed
by a property of Pψ(x, p)—known to Wigner, but first reported (without proof)
by Takabayasi14—which is much easier to state

|Pψ(x, p)| � 2
h (26)

12 Recall my earlier remark about quantum mechanics being “a profoundly
strange subject, entitled to its surprising quirks . . . ”

13 I find it notationally convenient in the present context to write

H = 1
4�ω(κ 2 + ℘2)

with
κ ≡

√
2mω/� · x : dimensionless length

℘ ≡
√

2/mω� · p : dimensionless momentum

See quantum mechanics (), Chapter 2, p. 58 for discussion of the relation
of these to some other conventions.

14 T. Takabayasi, “The formulation of quantum mechanics in terms of
ensembles in phase space,” Prog. Theo. Phys. 11, 341 (1954). See especially
§7 in that important paper.
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Figure 1: Wigner functions (25) for the three lowest-lying energy
eigenstates of a harmonic oscillator. The excited states display
“regions of negativity.” It is on account of the typical occurance of
such regions that Pψ(x, p) is sometimes called a“quasi-distribution.”

than to prove, but the proof is highly instructive. To the observation that (21)
can be written

Pψ(x, p) = 2
h (ψ|W(x, p)|ψ)

W(x, p) ≡ 1
2h

∫∫
E(α, β)e−

i
�
(αp+βx) dαdβ (27)

bring the observations that (almost obviously)

W+(x, p) = W(x, p) : W(x, p) is self-adjoint

and (not at all obviously, though the tedious proof is elementary15)

W –1(x, p) = W(x, p) : W(x, p) is also unitary

The operators W(x, p) are, in other words, “self-adjoint square roots of unity:”

W2(x, p) = I : all x and p

We now have

|h2 Pψ|2 = (ψ|Ω)(Ω|ψ) with |Ω) ≡ W |ψ)
� (ψ|ψ)(Ω|Ω)︸ ︷︷ ︸ by the Schwarz inequality

1 because (Ω|Ω) = (ψ|W2|ψ) = (ψ|ψ)

which completes the pretty argument. The uncertainty principle arises now as
an expression of the proposition (see Figure 2) that—since Pψ(x, p) lives “under
a ceiling,” yet is obliged to satisfy the normalization condition (23)—there exists
a least-allowed area of the phase domain on which Pψ(x, p) is non-zero:

“footprint” � h
2

15 For the details see quantum mechanics (), Chapter 3, p. 127.
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Figure 2: Wigner functions Pψ(x, p), since bounded by (26) and
normed by (23), possess “footprints” of area not less than 1

2h, which
is the upshot of the Heisenberg uncertainty principle. The figure has
been adapted from my “A mathematical note: Gaussians of square
cross-section,” which some readers may find to be of independent
interest.

Formally, as � ↓ 0 the least-possible footprint becomes progressively smaller; in
the classical limit—but only in the classical limit—does it become possible to
contemplate distributions of the form

P (x, p) ∼ δ(x− x0) · δ(p− p0)

The “Wigner transform” (22.1) sends

ψ(x) −−−−−−−−→
Wigner

Pψ(x, p)

It seems natural to ask: Can one, if given Pψ(x, p), recover ψ(x)? But my
occasional attempts to resolve the matter had been fruitless, so I was quite
surprised when Mark Beck, a young colleague whom I had invited to speak
with my students about some applications of the phase space formalism to
quantum optics, referred casually to the “inverse Wigner transform.” When I
asked “How is it accomplished?” he proceeded to show me. Mark does not
claim to have invented the trick in question, but can cite no source, and it was,
so far as I am aware, unknown to the founding fathers of the field; I call it
“Beck’s trick.” It runs

ψ(x)←−−−−−−−−
Beck

Pψ(x, p)

and proceeds as follows: By Fourier transformation of (22.1) obtain
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∫
Pψ(x, p) e−2 i

�
pζ dp =

∫
ψ∗(x + ξ) δ(ξ − ζ)ψ(x− ξ)dξ

= ψ∗(x + ζ) ψ(x− ζ)

Select a point a at which
∫

Pψ(a, p) dp = ψ∗(a) ψ(a) �= 0.16 Set ζ = a − x to
obtain ∫

Pψ(x, p)e−2 i
�

p(a−x) dp = ψ∗(a) ψ(2x− a)

and by notational adjustment 2x− a �→ x obtain

ψ(x) = [ψ∗(a)]–1 ·
∫

Pψ(x+a
2 , p) e

i
�

p(x−a) dp

↓
= [ψ∗(0)]–1 ·

∫
Pψ(x

2 , p) e
i
�

px dp in the special case a = 0 (28)

where the prefactor is, in effect, a normalization constant, fixed to within an
arbitrary phase factor.

To test the efficacy of (28) we look to the oscillator ground state, for which
at (25) we obtained

P0(x, p) = 2
h exp

{
− mω

�
x2 − 1

mω�
p2

}
(29)

Mathematica, working from (28), supplies

ψ∗
0(0) · ψ0(x) =

(
mω
π�

)1
2 exp

{
− mω

2�
x2

}

which—since therefore ψ∗
0(0) =

(
mω
π�

)1
4 ei(arbitrary phase)—is exactly correct.

The distribution P0(x, p) introduced at (29) is of the class

P (x, p; a, b) ≡ 1
πab exp

{
− (x/a)2 − (p/b)2

}
(30)

and belongs more particularly to the subclass ab = �. The bivariate Gaussians
(30) conform to the normalization condition (23) in all cases, but conform to the
boundedness condition (26) if and only if ab � �. Beck’s trick, as implemented
by Mathematica, supplies

ψ(x; a, b) = 1√
a
√

π
exp

{
− 1

4

(
1
a2 + b2

�2

)
x2

}

in all cases. What goes wrong when the boundedness condition is violated;
i.e., when (30) describes an “impossible” Wigner function? The question is
answered by the observation that∫

|ψ(x; a, b)|2 dx = 1 if and only if ab = �

16 Such a point is, by
∫

ψ∗(x) ψ(x) dx = 1, certain to exist. It is often most
convenient (but not always possible) to—with Beck—set a = 0.
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As he approached the end of his working career, Wigner was several times
tempted by circumstance to revisit this site of his youthful invention.17 In his
contribution to a collection of essays in honor of Alfred Landé18 he develops a
short list of conditions which are sufficient to insure that a given P (x, p) can
be displayed as an instance of (22.1), but professes dissatisfaction with his final
condition, which was that in the absence of forces P (x, p; t) should satisfy the
classical equation ∂tP = −(p/m)∂xP . A decade later he was able to replace
that condition with one that he found more satisfactory.19 I describe the new
condition, as it arises from the theory already in hand. Enlarging upon (21),
let us write

ρρρψ ≡ |ψ)(ψ| −−−−−−−−→
Weyl

hPψ(x, p)

ρρρϕ ≡ |ϕ)(ϕ| −−−−−−−−→
Weyl

hPϕ(x, p)

Then

|(ψ|ϕ)|2 = (ψ|ϕ)(ϕ|ψ)
= tr

{
ρρρψ ρρρϕ

}
= h

∫∫
Pψ(x, p)Pϕ(x, p) dxdp by (18) (31)

� (ψ|ψ)(ϕ|ϕ) = 1

which is the condition embraced by O’Connell & Wigner. As a special case,
one has (compare (23))

h

∫∫
Pψ(x, p)Pψ(x, p) dxdp = tr

{
ρρρ2

ψ = ρρρψ

}
= 1 (32)

which, at least from a function-theoretic point of view, is remarkable.

17 Wigner was thirty when the  paper9 was published. He was awarded
the Nobel Prize in  for “systematically improving and extending the
methods of quantum mechanics . . . ”

18 “Quantum-mechanical distribution functions revisited” in Perspectives in
Quantum Theory , edited by W. Yourgrau & A. van der Merwe (). The
paper presents a good list of the references that Wigner considered significant.

19 R. F. O’Connell & E. P. Wigner, “Quantum-mechanical distribution
functions: conditions for uniqueness,” Physics Letters 83A, 145 (1981). Shortly
later the same two authors published “Some properties of a non-negative
quantum-mechanical distribution function,” Physics Letters 85A, 121 (1981),
which will concern us later. And a comprehensive review of the entire subject
is presented in M. Hillery, R. F. O’Connell, M. O. Scully & E. P. Wigner,
“Distribution functions in physics: fundamentals,” Physics Reports 106, 121
(1984). The Weyl–Wigner connection does receive mention in the last of those
papers, but seems otherwise not to have interested Wigner.
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The Wigner representation of mixed states. Let ρρρ refer to a mixture, and write

ρρρ =
∑

n

ρnρρρn with ρρρn ≡ |n)(n|

to describe its spectral representation. From the linearity of the Weyl transform
it follows that if

ρρρn −−−−−−−−→
Weyl

hPn(x, p)

then
ρρρ −−−−−−−−→

Weyl
hP (x, p) = h

∑
n

ρnPn(x, p) (33)

Familiar arguments (or slight variations of them) serve to establish that
• P (x, p) is real-valued, whether it refers to a pure state or a mixture;
•

∫
P (x, p)dxdp = 1, whether . . . a pure state or a mixture;

• |P (x, p)| � 2
h , whether . . . a pure state or a mixture.

But we saw at (0 –113) that trρρρ2 � trρρρ, with equality if and only if the state is
pure; the implication, by (18), is that

h

∫∫
P 2(x, p) dxdp � 1 (34)

with equality (see again (32)) if and only if P (x, p) refers to a pure state.

The projective operators ρρρn are tracewise orthogonal

tr
{
ρρρmρρρn

}
= δmn

and—if known—permit one to write

ρn = tr
{
ρρρρρρn

}
One can announce that ρρρ is a density operator (describes the state of some
mixture) if it is found that 0 � ρn � 1 (all n) and that

∑
n ρn = 1. In Wigner

language we therefore have

h

∫∫
Pm(x, p)Pn(x, p) dxdp = δmn

(35)
ρn = h

∫∫
P (x, p)Pn(x, p) dxdp

and can announce under those same spectral conditions that P (x, p) is a Wigner
function. But I know of no way short of such full-blown spectral analysis to
distinguish Wigner functions from other functions of the same arguments. In
particular, we presently possess no direct way to establish that

No function of the form f(x) · g(p) can be a Wigner function (36)

though we know on other grounds that that surely must be the case.
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Quantum motion of a Wigner distribution. We elect to work in the Schrödinger
picture, where observables (at least those with time-independent definitions)
remain at rest and the state descriptor ρρρ moves, as described by

i�∂tρρρ = [H , ρρρ ] (6.1) = (37)

Drawing upon

H −−−−−→
Weyl

H(x, p) :
{

the classical Hamiltonian; inverse of the
transformation that originally gave us H

ρρρ −−−−−→
Weyl

hP (x, p)

and the rule (17.2) for transforming commutators, we have

∂
∂tP (x, p; t) = 2

�
sin

{
�

2

[(
∂
∂x

)
H

(
∂
∂p

)
P
−

(
∂
∂x

)
P

(
∂
∂p

)
H

]}
H(x, p)P (x, p; t) (38)

= [H, P ] + terms of order �
2 (39)

↑—Poisson bracket

which, in view of the fact that (39) → (3.2) as � ↓ 0, serves beautifully our
motivating objective: at (39) quantum/classical dynamics have at last and
quite explicitly been brought “into the same room together.”

Spelling out in more detail the meaning of (38), we have

Pt =
{
HxPp − HpPx

}
− 1

3!

(
�

2

)2{
HxxxPppp − 3HxxpPppx + 3HxppPpxx − HpppPxxx

}
+ · · ·

which for systems of the standard design H = 1
2mp2 + U(x) simplifies:

Pt =
{
UxPp − (p/m)Px

}
− 1

3!

(
�

2

)2
UxxxPppp + 1

5!

(
�

2

)4
UxxxxxPppppp − · · ·

|—becomes exactly classical when the Hamiltonian (40)
depends at most quadratically on its arguments

For a free particle we recover the condition Pt = −(p/m)Px which O’Connell
& Wigner sought to replace.

Equation (38) is exactly equivalent to the Schrödinger equation. It presents
not a physical alternative to, but simply a reformulation of orthodox quantum
mechanics. It possesses some obviously attractive properties, but those are
purchased at a price: while the Schrödinger equation is (when the Hamil-
tonian depends at most quadratically upon momentum) a linear partial differ-
ential equation of 2nd order, (38) is a linear partial differential equation of
infinite order. The latter circumstance cuts us off from the familiar resources of
Sturm-Liouville theory, and suggests that (38) might more naturally be
formulated as an integral equation. This can—sometimes usefully—be done:
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one obtains20

∂
∂tP (x, p ; t) =

∫∫
K(x, p ;x0, p0)P (x0, p0; t) dx0dp0

with

K(x, p ;x0, p0) = 2π
(

2
h

)3∫∫
H(x′, p′) sin


2

�
det


 1 x p

1 x′ p′

1 x0 p0




 dx′dp′

but I will not belabor the point.

Often (more often quantum mechanically than classically) one has special
interest in those aspects of dynamics where in fact nothing moves. I allude to the
practical importance we attach to the time-independent Schrödinger equation.
I discuss now—first in general terms, then in reference to a familiar example—
how that theory fits within the phase space formalism.

Suppose H |n) = En|n). Temporally the eigenfunctions “buzz”

|n) −→ e−iωnt|n) with ωn ≡ En/�

but the exponential buzz factors cancel when one constructs ρρρn ≡ |n)(n|. It is
evident that Hρρρn = 1

2 (Hρρρn + ρρρnH) + 1
2 (Hρρρn − ρρρnH) = Enρρρn, and evident also

that (Hρρρn − ρρρnH) = 0 . So we have

H |n) = En|n) ⇐⇒
{

1
2 (Hρρρn − ρρρnH) = 0
1
2 (Hρρρn + ρρρnH) = Enρρρn

(41)

In density operator language the time-independent theory hinges on a pair of
equations, which in the phase space formalism become

sin
{

�

2

[(
∂
∂x

)
H

(
∂
∂p

)
P
−

(
∂
∂x

)
P

(
∂
∂p

)
H

]}
H(x, p)Pn(x, p) = 0

cos
{

�

2

[(
∂
∂x

)
H

(
∂
∂p

)
P
−

(
∂
∂x

)
P

(
∂
∂p

)
H

]}
H(x, p)Pn(x, p) = EnPn(x, p)

(42)

We look to see what (42) has to say about a couple of examples, of which the
first is standard to the phase space literature . . . and the second isn’t.

20 See quantum mechanics (), Chapter 3, p. 110 –114. That discussion
owes a little to Wigner but much to Moyal, and culminates in a description of
the “phase space propagator”—a function of the form K(x, p, t ;x0, p0, t0) that
permits one to write

P (x, p ; t) =
∫∫

K(x, p, t;x0, p0, t0)P (x0, p0; t0) dx0dp0

and is therefore an object which would assume high importance if one were to
pursue this subject to its depths.
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harmonic oscillator This system derives its special simplicity from the
circumstance that

H(x, p) = 1
2mp2 + 1

2mω2x2 (43.1)

is quadratic in its arguments. The first of equations (42) therefore reads

[H, Pn ] = 0 : Pn(x, p) is a classical constant of the motion (43.2)

From the classical theory of conservative systems with one degree of freedom
it follows therefore that Pn(x, p) can be described Pn(x, p) = fn(H(x, p)).
Returning with this information to the second of equations (42)—which when
the Hamiltonian is quadratic reads

HP − 1
2

(
�

2

)2{
HxxPpp − 2HxpPpx + HppPxx

}
= EP (43.3)

—we use

P = f(H) :
Ppp = (Hp)2fHH + HppfH

Pxx = (Hx)2fHH + HxxfH

and

Hx = mω2x

Hp = p/m
:

Hxx = mω2

Hxp = 0
Hpp = 1/m

to obtain (after simplifications){
H − 1

4 (�ω)2H d2

dH2 − 1
4 (�ω)2 d

dH

}
f = Ef

Multiplication by (�ω)–1 gives{
W − 1

4W d2

dW 2 − 1
4

d
dW

}
g = εg

where W ≡ H/�ω, ε ≡ E/�ω are dimensionless variables, and g(W ) ≡ f(H).
Adjust the dependent variable

g(W ) 
−→ k(W ) ≡ e2W g(W )

and, after some elementary rearrangement, obtain{
1
4W d2

dW 2 + 1−4W
4

d
dW +

(
ε − 1

2

)}
k = 0

which by a final adjustment becomes{
E d2

dE2 + (1 − E) d
dE + n

}
� = 0 (43.4)

n ≡ ε − 1
2
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where E ≡ 4W = 4H/�ω and �(E) ≡ k(W ) = e2H/�ωf(H). The point
of preceding manipulations has come finally into view, for (43.4) is precisely
Laguerre’s differential equation.21 The solutions of interest (those that will
lead us to normalizable Wigner distributions) become available if and only if
n = 0, 1, 2, . . ., and are called “Laguerre polynomials.” We are brought thus to
the conclusion that

En = �ωεn = �ω(n + 1
2 ) : n = 0, 1, 2, . . . (43.5)

Pn(x, p) = Cn e−
1
2ELn(E) (43.6)

where the constants Cn are to be fixed by the requirement that
∫
Pn dxdp = 1

and where

L0(z) = 1
L1(z) = 1 − z

L2(z) = 1 − 2z + 1
2z2

L3(z) = 1 − 3z + 3
2z2 − 1

6z3

...

Looking finally to the explicit evaluation of the normalization constants Cn . . .

In terms of the dimensionless phase coordinates introduced previously13

we have dxdp = �

2dκd℘ which, if we use κ =
√

E cos ϑ, ℘ =
√

E sinϑ to install
polar coordinates on the dimensionless phase plane, becomes dxdp = �

4dϑdE.
So we have ∫∫

Pn(x, p) dxdp = Cn
�

42π

∫ ∞

0

e−
1
2ELn(E) dE

Classical theory supplies the generating function 1
1−te

−zt/(1−t) =
∑

n Ln(z)tn

so we have

∞∑
n=0

{ ∫ ∞

0

e−
1
2ELn(E) dE

}
tn = 1

1−t

∫ ∞

0

e−
1
2E−E t/(1−t) dE

= 1
1−t

∫ ∞

0

e−
1
2

1+t
1−t E dE

= 2
1+t = 2 (1 − t + t2 − t3 + t4 − · · ·)

from which it follows that Cn = (−)n 2
h . Returning with this information to

(43.6), we have
Pn(x, p) = (−)n 2

h e−
1
2ELn(E) (43.7)

—in exact agreement with the results (25) obtained previously by other means.

21 See J. Spanier & K. O. Oldham, An Atlas of Functions (), 23:3:5. The
whole of Chapter 23—to which I refer henceforth without specific attribution—
is given over to an excellent account of properties of the Laguerre polynomials.
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The preceding exercise serves to demonstrate that
• the phase space formalism can be made the basis (at least in favorable cases)

of effective quantum mechanical calculation, but
• lends new patterns to the analytical details.

Carrying this discussion just a little farther: by application of Beck’s trick
(28) we might expect to have

∑
n

ψ∗
n(0)ψn(x)tn =

∑
n

{ ∫
Pn(x

2 , p)e
i
�

xp dp

}
tn

=
∫

e
i
�

xp

{ ∑
n

Pn(x
2 , p)tn

}
dp

But
∑

Pn tn = 2
he−

1
2E

∑
Ln(E)(−t)n = 2

he−
1
2E 1

1+te
Et/(1+t) = 2

h
1

1+te
1
2

t−1
t+1 E so

= 2
h

1
1+t

∫
exp

{
i
�
xp − 1−t

1+t
1
�

[
1

mω p2 + mω
(

x
2

)2]}
dp

=
√

2mω
h

1√
1−t2

exp
{
− 1+t2

1−t2
mω
2�

x2
}

= 1
a
√

2π
1√

1−t2
exp

{
− 1+t2

1−t2
1
4κ

2
}

in notation of p. 11

= 1
a
√

2π
e−

1
4 κ

2
{

1 + 1
2

[
1 − κ

2
]
t2

+ 1
8

[
3 − 6κ

2 + κ
4
]
t4

+ 1
48

[
15 − 45κ

2 + 15κ
4 − κ

6
]
t6 + · · ·

}

At x = 0 (which is to say: at κ = 0) we therefore have

∑
n

|ψn(0)|2 tn = 1
a
√

2π

{
1 + 1

2 t2 + 3
8 t4 + 15

48 t6 · · ·
}

The polynomials are recognized to be monic Hermitian:

H0(z) = 1
H1(z) = z

H2(z) = z2 − 1
H3(z) = z3 − 3z

H4(z) = z4 − 6z2 + 3
H5(z) = z5 − 10z3 + 15z

H6(z) = z6 − 15z4 + 45z2 − 15
...
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We are in position therefore to write

ψ0(x) =
[

1
a
√

2π

]− 1
2 1

a
√

2π
e−

1
4 κ

2
H0(κ) = 1√

a
√

2π

1√
1·1e−

1
4 κ

2
H0(κ)

ψ2(x) =
[

1
a
√

2π
1
2

]− 1
2 1

a
√

2π
1
2e−

1
4 κ

2
H2(κ) = 1√

a
√

2π

1√
2·1e−

1
4 κ

2
H2(κ)

ψ4(x) =
[

1
a
√

2π
3
8

]− 1
2 1

a
√

2π
1
8e−

1
4 κ

2
H4(κ) = 1√

a
√

2π

1√
8·3e−

1
4 κ

2
H4(κ)

ψ6(x) =
[

1
a
√

2π
15
48

]− 1
2 1

a
√

2π
1
48e−

1
4 κ

2
H6(κ) = 1√

a
√

2π

1√
48·15e−

1
4 κ

2
H6(κ)

...

But
√

1 · 1 =
√

0! ,
√

2 · 1 =
√

2! ,
√

8 · 3 =
√

4! ,
√

48 · 15 =
√

6! , . . . so we
have obtained normalized oscillator eigenstates which agree precisely with those
presented in the text books. We missed the states of odd order because we
placed Beck’s reference point at the origin . . .where, as it happens, the oscillator
states ψodd(x) vanish.

particle in free fall The Hamiltonian

H(x, p) = 1
2mp2 + mgx (44.1)

again has the property that x and p enter with powers not exceeding two, so the
resulting physics exhibits some of the simplicity of oscillator theory, from which
in other respects it differs profoundly. It is to introduce some mathematical
ideas and notation (and to prepare the ground for a surprising development)
that I look first to the seldom-discussed wave mechanics22 of free fall, and take
up the phase space formulation of the problem only after that preparation is
complete.

The time-independent Schrödinger equation − �
2

2mψ′′ +mgxψ = Eψ can be
written

ψ′′(x) = 2m2g
�2

(
x − E

mg

)
ψ(x) (44.2)

which by change of variable23

x 
−→ yE ≡
(

2m2g
�2

)1
3
(
x − E

mg

)
(44.3)

becomes
d2

dy2 Ψ(y) = yΨ(y) (44.4)

This is Airy’s differential equation, first encountered in George Airy’s “Intensity
of light in the neighborhood of a caustic” (). The solutions are linear

22 I use that antique term to distinguish Schrödinger’s ψ(x)-theory from other
formulations of quantum mechanics.

23 The subscript emphasizes that the the eigenvalue E has been absorbed into
the definition of the independent variable, and will be omitted when its presence
makes no immediate difference.
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combinations of the Airy functions Ai(y) and Bi(y), which are close relatives of
the Bessel functions of orders ± 1

3 , and of which (since Bi(y) diverges as y → ∞)
only the former

Ai(y) ≡ 1
π

∫ ∞

0

cos
(
yu + 1

3u3
)

du (44.5)

will concern us.24 To gain insight into the origin of Airy’s construction, write

f(y) = 1
2π

∫ +∞

−∞
g(u)eiyu du

and notice that f ′′ − yf = 0 entails

1
2π

∫ +∞

−∞

[
− u2g(u) + ig(u) d

du

]
eiyu du = 0

Integration by parts gives

1
2π ig(u)eiyu

∣∣∣+∞

−∞
− 1

2π

∫ +∞

−∞

[
u2g(u) + ig ′(u)

]
eiyu du = 0

The leading term vanishes if we require g(±∞) = 0. We are left then with a
first-order differential equation u2g(u)+ig ′(u) = 0 of which the general solution
is g(u) = A · ei 1

3 u3
. So we have

f(y) = A · 1
2π

∫ +∞

−∞
ei (yu+ 1

3 u3) du = A · 1
π

∫ ∞

0

cos
(
yu + 1

3u3
)

du

It was to achieve ∫ +∞

−∞
Ai(y) dy = 1 (44.6)

that Airy assigned the value A = 1 to the constant of integration.

Returning with this mathematics to the quantum physics of free fall, we
see that solutions of the Schrödinger equation (44.2) can be described

ψE(x) = N · Ai
(
k(x − aE)

)
(44.7)

where N is a normalization factor (soon to be determined), and where

k ≡
(

2m2g
�2

)1
3 = 1

“natural length” of the quantum free fall problem

aE ≡ E
mg = classical turning point of a particle lofted with energy E

E ≡ kaE = E
mg(natural length) ≡ dimensionless energy parameter

It is a striking fact—evident in (44.7)—that the eigenfunctions ψE(x) all have
the same shape (i.e., are translates of one another: see Figure 3), and remarkable

24 For a summary of the properties of Airy functions see Chapter 56 in
Spanier & Oldham.21 Those functions are made familiar to students of quantum
mechanics by their occurance in the “connection formulæ” of simple WKB
approximation theory: see Griffiths’ §8.3, or C. M. Bender & S. A. Orszag,
Advanced Mathematical Methods for Scientists & Engineers (), §10.4.
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Figure 3: Free fall eigenfunctions ψE(x) with E < 0, E = 0, E > 0,
in descending order. The remarkable translational similarity of the
eigenfunctions is perhaps not surprising, in view of the translational
similarity of the parabolic graphs of the solutions

x(t) − aE = − 1
2g(t − t0)2

of the classical free fall equation mẍ = −mgx.
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also that the the energy spectrum is continuous, and has no least member :
the system possesses no ground state. One might view this highly unusual
circumstance to be a consequence of the notion that “free fall” is free motion
relative to a non-inertial frame.

The eigenfunctions ψE(x) share with the free particle functions e±
i
�

√
2mE x

the property that they are not individually normalizable,25 but require assembly
into “wavepackets.” They do, however, comprise a complete orthonormal set,
in the sense which I digress now to establish. Let

f(y, m) ≡ Ai(y − m)

To ask of the m-indexed functions f(y, m)
• Are they orthonormal :

∫
f(y, m)f(y, n) dy = δ(m − n)?

• Are they complete:
∫

f(x, m)f(y, m) dm = δ(x − y)?
is, in fact, to ask the same question twice, for both are notational variants of
this question: Does∫ +∞

−∞
Ai(y − m)Ai(y − n) dy = δ(m − n)?

An affirmative answer (which brings into being a lovely “Airy-flavored Fourier
analysis”) is obtained as follows:

=
(

1
2π

)2∫∫∫
ei [(y−m)u+ 1

3 u3]ei [(y−n)v+ 1
3 v3] dudvdy

= 1
2π

∫∫
ei 1

3 (u3+v3)e−i(mu+nv)

{
1
2π

∫
eiy(u+v) dy

}
︸ ︷︷ ︸ dudv

δ(u + v)

= 1
2π

∫
ei 1

3 (v3−v3)︸ ︷︷ ︸ eiv(m−n) dv = δ(m − n)

1

So for our free fall wave functions we have the “orthogonality in the sense of
Dirac:”∫ +∞

−∞
ψ∗

E′(x)ψE′′(x) dx = N2

∫ +∞

−∞
Ai

(
k(x − aE ′)Ai

(
k(x − aE ′′) dx

= N2 1
k · δ(E′ − E′′)

↓
= δ(E′ − E′′) if we set N =

√
k (44.8)

The functions thus normalized are complete in the sense that∫ +∞

−∞
ψ∗

E (x′)ψE(x′′) dE = δ(x′ − x′′) (44.9)

25 Asymptotically Ai2(y) ∼ 1

π
√

|y|
sin2

(
2
3 |y|

3
2 + π

4

)
dies as y ↓ −∞, but so

slowly that the limit of
∫ 0

y
Ai2(u) du blows up.
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I record one final result which issues from Schrödinger’s formulation of the
free fall problem. A few lines of fairly straightforward calculation26 lead to the
conclusion that the associated Green’s function can be described

G(x, t;x0, 0) =
∫

ψE(x)ψ∗
E (x0)e−

i
�

E(E)t dE with E(E) ≡ (mg/k)E

=
√

m
iht exp

{
i
�

[
m
2t (x − x0)2 − mg

2 (x + x0)t − mg2

24 t3
]}

(44.10)

We observe that this result can be notated (compare (0–95))

=
√

i
h

∂2S
∂x∂x0

e
i
�

S(x,t;x0,0)

and that the S(x1, t1;x0, t0) thus defined is precisely the classical action
function associated with the dynamical path

(x0, t0) −−−−−−−−−−−−→
free fall

(x1, t1)

The latter fact is non-obvious, but emerges when one introduces

x(t) = − 1
2g t2 + (x1−x0)− 1

2 g(t21−t20)

t1−t0
t + (x0− 1

2 gt20)t1−(x1− 1
2 gt21)t0

t1−t0

(the free fall parabola which links the specified spacetime points) into

S[x(t)] =
∫ t1

t0

{
1
2mẋ(t)2 − mgx(t)

}
dt

and performs the simple integration.27 With G(x, t;x0, 0) now in hand we are
in position to study the free fall of lofted wavepackets . . .but won’t; this is done
in the notes to which I refer below.

Returning now to the phase space formalism, we introduce ψE(x) into (22.1)
and undertake to obtain a description of PE(x, p). We have

PE(x, p) = 2
hk

∫
Ai

(
k(x + ξ) − E

)
e2 i

�
pξAi

(
k(x − ξ) − E

)
dξ

Introduce dimensionless variables y ≡ kx, ζ ≡ kξ, q ≡ p/�k and obtain

26 Details can be found on p. 32 of my “Classical/quantum mechanics of a
bouncing ball” (), which provides a fairly exhaustive account of the classical
and quantum physics of constrained/unconstrained free fall. I hope to produce
an electronic version of that material in the not-too-distant future. I would
expect to include material developed at that same time by Richard Crandall. In
the meantime, see pp. 101–105 of S. Flüge, Practical Quantum Mechanics ()
for discussion of the rudiments of the bouncing ball problem; I am indebted to
Robert Reynolds for this reference.

27 See quantum mechanics (), Chapter 1, p. 21 for the details.
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PE = 2
h

∫
Ai

(
y + ζ − E

)
ei2qζAi

(
y − ζ − E

)
dζ

= 2
h

(
1
2π

)2∫∫∫
ei

[
(y+ζ−E)u+ 1

3 u3
]
+i2qζ+i

[
(y−ζ−E)v+ 1

3 v3
]
dudvdζ

The ζ-integral eats a 1
2π -factor and burps out δ(u − v + 2q). We then get the

v -integral for free, and are left with

PE = 2
h

1
2π

∫
ei

[
2
3 u3+2qu2+(4q2+2ŷ)u+( 8

3 q3+2qŷ)
]
du : ŷ ≡ y − E (44.11)

Now, it has been known for millennia that the term of next-to-leading-order in

F (x) ≡ Axn + Bxn−1 + Cxx−2 + · · · + Px + Q

can be killed by translation; i.e., that it is always possible—and invariably
useful—to exhibit a polynomial of the design f(x) = Axn+0+cxn−2+· · ·+px+q
such that

F (x) = f(x + B
nA )

In the present instance it is a wonderful fact that the tranlation designed to kill
the quadratic term kills also the constant term; i.e., that

2
3u3 + 2qu2 + (4q2 + 2ŷ)u + ( 8

3q3 + 2qŷ) = 2
3 (u + q)3 + 2(q2 + ŷ)(u + q)

= 1
3w3 + 2

2
3 (q2 + ŷ)w

w ≡ 2
1
3 (u + q)

Returning with this information to (44.11) we have

PE(x, p) = 2
h2−

1
3 · 1

2π

∫
ei

[
1
3 w3+2

2
3 (q2+ŷ)w

]
dw

= 2
h2−

1
3 · Ai

(
2

2
3 (q2 + y − E)

)
(44.12)

I promised at the outset a “surprising development,” and it is this: in the
quantum oscillator problem we encountered

Hermite −−−−−−−−−−−−→
Wigner

Laguerre

but the problem of quantum mechanical free fall is in this respect elegantly
symmetric:

Airy −−−−−−−−−−−−→
Wigner

Airy

The construction q2 + y − E which enters as the argument of the Airy
function on the right side of (44.12) can be understood as follows: The system
under consideration affords a

natural energy = mg · (natural length) = mg/k

and the equations 1
2mp2 + mgx − E = 0 inscribe isoenergetic parabolas on

classical phase space. Division by the natural energy yields equations which in
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Figure 4: Classical isoenergetic curves on the dimensionless phase
plane. The turning point occurs at y = E. The curves shown have
E < 0, E = 0, E > 0.

Figure 5: Each of the E-indexed Wigner functions PE(x, p) is
translationally equivalent to each of the others, and each is constant
on each of the curves shown in the preceding figure. The functions
assume negative values in each of the troughs: see again Figure 3,
which can be read now as a description of PE(x, 0).

terms of the “dimensionless momentum/length/energy” variables q, y, and E

read q2+y−E = 0. Those equations inscribe E-parameterized coaxial parabolas
on the

{
y, q

}
-plane (dimensionless phase plane), as shown in Figure 4. Each of

the Wigner functions PE(x, p) is constant on each of those curves (Figure 5).

The eigenstates ψE(x) do not describe possible quantum states of the free
fall system for the reason—already remarked—that they are not normalizable.
The same has now to be said—for the same reason—of the Wigner functions
PE(x, p). The point can be established either by general argument∫

PE(x, p) dp = |ψE(x)|2 and
∫

|ψE(x)|2 dx = ∞
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or more specifically:∫∫
PE(x, p) dxdp =

∫∫
2
h2−

1
3 · Ai

(
2

2
3 (q2 + y − E) �dydq

= 1
2π

∫
dq = ∞

I will return in a moment to discussion of the implications of this circumstance.

Suppose we had elected to proceed directly from (42)—for free fall as we
did for the oscillator. We would as before be led to the conclusion that

P (x, p) = f(H(x, p))

and by simple adjustment of our former argument to the conclusion that f(H)
must satisfy {

H − 1
8�

2mg2 d2

dH2

}
f = Ef

which if we write H ≡ k
mg H = q2 + y (“dimensionless energy”) becomes

1
4

d2

dH2 f = (H − E)f

Thus are we led—with swift economy—back to the statement first encountered
at (44.12):

PE(x, p) = (constant) · Ai
(
4

1
3 (H − E)

)
But we find ourselves now (as then) unable to use

∫∫
PE(x, p) dxdp = 1 to assign

enforced value to the numerical prefactor.

Were this discussion to be protracted one would want to consider (among
other things) how—in analytical detail—it comes about that

free particle theory arises from
{

the oscillator as ω ↓ 0
free fall as g ↓ 0

The delicacy of the issue is made less surprising when one considers how different
from one another (geometrically/topologically) are the families of isoenergetic
curves encountered in the three cases. We will have occasion to review the free
particle theory (but not the limiting process) in the next section.

Remarks concerning the distinction between “wavepackets” and “mixtures.” Let{
|n)

}
be some orthonormal basis in the space of states, and let

|ψ) =




∑
n cn|n) : discrete case∫
c(n)|n) dn : continuous case

describe some superposition of such states. By vague convention we usually
reserve the term “wavepacket” for circumstances in which (x|ψ) is in some
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relevant sense “semi-localized,” but here I find it convenient to abandon that
restrictive convention. In the continuous case the orthonormality condition

(m|n) = δ(m − n) renders (n|n) = 1 impossible

so in that case |n) cannot refer literally to a “quantum state,” but has rather
the status of an analytical crutch. That |ψ) refers to such a state is by

(ψ|ψ) =
∫∫

(m|c∗(m)c(n)|n) dmdn =
∫

|c(n)|2 dn = 1

a responsiblity borne by its coordinates c(n).

The projector onto |ψ) can be described

|ψ)(ψ| =




∑
m

∑
n |m)cmc∗n(n| : discrete case∫ ∫

|m)c(m)c∗(n)(n| dmdn : continuous case

Both formulæ present us with
• projection operators |n)(n| on the diagonal, but
• non-projectors |m)(n| at off-diagonal positions.

Projectivity is in either case an easy consequence of

(m|n) = δmn else (m|n) = δ(m − n)

and ∑
n

|cn|2 = 1 else
∫

|c(n)|2 dn = 1

If the off-diagonal terms could on some grounds be expunged28 then we would
be left with operators of the design

ρρρ =




∑
n |n)pn(n| : discrete case∫
|n)p(n)dn(n| : continuous case

with pn ≡ |cn|2 else p(n) ≡ |c(n)|2. We would, in other words, be left with a
density operator—the descriptor not of a wavepacket (superposition of states)
but of a mixture of states. We are led to the view that

Mixtures are “incoherent superpositions”

28 The simplest procedure: Write cn = aneiφn and average over all phases,
though of (on what physical grounds?) as independent random variables.
This is the method of random phases, encountered already once in each of
the preceding chapters.
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Any given state can be represented

state =
∑

component states

in many ways. We assign objective significance to no such decomposition, but
only to the measurement devices which project onto the elements of one or
another of them. We allow ourselves, as a matter of analytical convenience
(Fourier analysis provides an example), to write

state =
∑

component non-states

even though no measurement device can “prepare (or project onto) a non-state.”
Similarly . . .

We write

density operator ρρρmixture =
∑

weighted projectors ρρρpure

but have learned to assign objective significance to no particular representation
of the mixture. The question before us: Is it (not physically but) formally
possible/expedient to contemplate admixtures of “non-states”?29 Is it sense or
nonsense to write (as a moment ago we casually did) ρρρ =

∫
|n)p(n)dn(n|? I

assert that to write such a thing would be to write nonsense . . . on grounds that
if

{
|a)

}
is some arbitary basis (whether discrete or continuous: I arbitrarily

assume the latter) then

trρρρ =
∫∫

(a|n)p(n)dn(n|a) da =
∫∫

(n|a)da(a|n) p(n)dn =
∫

(n|n) p(n)dn

is uninterpretable; maybe infinite, but certainly not unity. Relatedly: while it
makes sense to write

|ψ) =
∫

c(n)|n) dn → |n0) when c(n) → δ(n − n0)

and while |ψ)(ψ| =
∫∫

|m)c∗(m)c(n)(n| dmdn is a meaningful construction, it
would be meaningless to assert that phase averaging yields

∫
|n)|c(n)|2(n| dn,

and doubly meaningless to allow c(n) → δ(n − n0), absurd to claim that the
result can be described |n0)(n0|.

The immediate point of this discussion: it would be improper to construct

P (x, p) ≡
∫

PE(x, p) · w(E) dE

and futile to expect to recover
∫∫

P (x, p) dxdp = 1 from a stipulation of the
form

∫
w(E) dE = 1.

29 By which term I understand continuously-indexed “states” which can be
normalized only formally, in the sense of Dirac.
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free particle This system—which in so many contexts is (if not
“too simple to be interesting”) deserving of the description “simplest possible”
—is considered only now because it exhibits delicate anomalies of the sort just
discussed. Working from H |ψ) = E|ψ) with H = 1

2m p2 one is led to energy
eigenfunctions which can in the x-representation be described30

ψ℘(x) = 1√
h
e

i
�

℘x with E = 1
2m℘2 ≡ 1

2mv2 (45.1)

Those continuously-indexed eigenfunctions are orthonormal only in the sense
of Dirac ∫

ψ∗
℘(x)ψ℘̂(x) dx = δ(℘ − ℘̂)

so refer not to proper quantum states, but to the formal devices I have called
“non-states.” When launched into motion they become

ψ℘(x, t) ≡ ψ℘(x) · e− i
�

E(℘)t

= 1√
h
e

i
�
[℘x− 1

2m ℘2t] (45.2)

Returning with this information to (22.1) we easily obtain

P℘(x, p ; t) = 1
hδ(p − ℘) (45.3)

from which all t -dependence (ditto all x-dependence) has disappeared. That
P℘(x, p; t) does in fact satisfy the dynamical equation(39) is now almost obvious.
But it is obvious also that the pathologies that famously haunt Schrödinger’s
free particle theory have been inherited by the phase space formalism. The
P℘(x, p ; t) of (45.3) is everywhere non-negative, and at phase points off the
isoenergetic line p = ℘ conforms to the boundedness condition (26). But on the
line P℘(x, p ; t) becomes singular, and it is clear that

∫∫
P℘(x, p ; t) dxdp �= 1.

In textbook quantum mechanics31 one remedies the pathology either by
placing the free particle in a large (confining = freedom-breaking) box, or by
assembling normalized wavepackets. The latter process is, for present purposes,
by far the most convenient. Form

ψ(x, t) =
∫ {[

1
λ
√

2π

]1
2 exp

{
− 1

4

[℘−℘0
λ

]2}}
ψ℘(x, t) d℘

and by integration32 obtain

=
[

1
σ[1+i(t/τ)]

√
2π

]1
2 exp

{
− x2

4σ2[1+i(t/τ)]
+ i

�

℘0x−(℘2
0/2m)

1+i(t/τ)

}
(45.4)

30 See again (0–80).
31 See L. I. Schiff, Quantum Mechanics (3rd edition ), §§10 & 12.
32 The details are spelled out on p. 9 of my “Gaussian wavepackets” ().
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where σ ≡ �/2λ and τ ≡ �m/2λ2 = 2mσ2/�. Straightforward calculation now
gives

|ψ(x, t)|2 = 1
σ(t)

√
2π

exp
{
− 1

2

[
x−vt
σ(t)

]2} (45.5)

which describes a Gaussian drifting to the right with constant speed v = ℘0/m,
growing progressively shorter/fatter33 as indicated by the hyperbolic rule

σ2(t) = σ2[1 + (t/τ)2] (45.6)

Returning with the normalized “launched Gaussian” (45.4) to Wigner’s
construction (22.1), we obtain34

Pgaussian(x, p ; t) = 2
h exp

{
−

[
x−vt

σ − (t/τ)p−mv
λ

]2 − 1
2

[
p−mv

λ

]2}

= 1
σ
√

2π
1

λ
√

2π
exp

{
− 1

2

[x−(p/m)t
σ

]2 − 1
2

[
p−mv

λ

]2} (45.7)

in which not only λ but also σ are constants, interrelated by σλ = 1
2�. It

is impossible to imagine a lovelier result: the distribution (45.7) is—for all
assignments of λ ∼ σ–1 and v ∼ ℘0

• normalized;
• in compliance with the boundedness condition (26);
• everywhere non-negative.

The distribution is readily seen to be a solution of the dynamical equation (38),
and the equation

Pgaussian(x, p ; t) =constant
0 < constant < 2

h

inscribes on phase space an ellipse, which moves as though carried along by the
classical free particle phase flow . The resulting shear results in the temporal
development of x-p correlation: see Figure 6.

In (45.7) we possess a class of distribution functions which (not quite
obviously) exhibit time-dependent “dispersion,” which at t = 0 is “minimal”
(meaning “least allowed by the uncertainty principle”):

∆x · ∆p = 1
2� ·

√
1 + (t/τ)2

↓
= 1

2� : minimal dispersion at t = 0

Let us for a moment set aside all “free particle” considerations, and look to the
bivariate normal distribution

P (x − x0, p − p0;σ, λ) ≡ 1
σ
√

2π
1

λ
√

2π
exp

{
− 1

2

[
x−x0

σ

]2− 1
2

[
p−p0

λ

]2} (46)

33 It is interesting to notice that we could in principle have arranged things
so that the “launched Gaussian” grows for a while progressively taller/skinnier,
before yielding to the inevitable.

34 See §6 in “Gaussian wavepackets”32 for the tedious but straightforward
computational details. Also the end of §8.
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Figure 6: Mechanism responsible for the dynamical development
of correlation. The figure derives from (45.7), in which I have set
σ, λ, m and v all equal to unity, and t = {0, 1, 2, 3}. A similar
graphic appears on p. 204 of Bohm’s text, but is claimed by him to
refer only to the classical physics of a free particle, and because he
works without knowledge of the phase space formalism he is obliged
to be vaguely circumspect in drawing his quantum conclusions. We,
however, are in position to identify the sense in which (48) pertains
as directly and literally to the quantum physics of a free particle as
it does to the classical physics. Also implicit in the figure are the
statements

σx(t) = σ
√

1 + (t/τ)2

σp(t) = constant

which we associate familiarly with the quantum motion of Gaussian
wavepackets, but are seen now to pertain equally well to the classical
motion of Gaussian populations of free particles.

as a free-standing mathematical object. Note first that if we set

x0 = p0 = 0 and σ =
√

�/mω2 , λ =
√

�mω/2

then (46) gives back the harmonic oscillator groundstate (29), so (46) can be
described as a “translated copy” of that state. The oscillator groundstate is the
best known instance of a state of minimal dispersion.

It is the boundedness condition (26) which forces σλ � 1
2�, and which

declares “sub-minimal distributions” (those with σλ < 1
2�) to be quantum

mechanically disallowed.

It can be shown35 that the inverse Wigner transform (Beck’s trick (28))
leads to a normalized state ψ0(x)—effectively: the groundstate of an oscillator—
if and only if the minimality condition σλ = 1

2� is satisfied. To say the same
thing another way: minimality is necessary and sufficient to insure that the
distribution P (x − x0, p − p0;σ, λ) satisfies the “pure state condition” (32).

All non-minimal instances of P (x−x0, p−p0;σ, λ) must refer to mixtures.
It is, we note in passing, very easy to construct representatives of mixtures from

35 See §9 in “Gaussian wavepackets”32 for the fairly straightforward details.
Or see the discussion pursuant to (30).
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the material now at hand; one has only to write

P (x, p) =
∫∫∫∫

P (x − x0, p − p0;σ, λ)w(x0, p0, σ, λ) dx0dp0dσdλ

where is an ordinary distribution on
{
x0, p0, σ, λ

}
-space. It is, perhaps, most

natural to impose the minimality condition (so that we are mixing states, rather
than mixing mixtures), and a simplification to fix the value of σ (whence also
of λ); one then has

P (x, p) =
∫∫

P (x − x0, p − p0;σ, λ)w(x0, p0) dx0dp0 (47)

In §12 of “Gaussian wavepackets”32 I examine in particular detail the theory of
“centered fat Gaussians”

P (x, p ;σσσ,λλλ) ≡ 1
σσσ
√

2π
1

λλλ
√

2π
exp

{
− 1

2

[
x
σσσ

]2− 1
2

[
p
λλλ

]2} (48)

where σσσ ≡ bσ, λλλ ≡ bλ and b � 1 is the “fatness parameter.” It emerges that

P (x, p ;σσσ,λλλ) =
∑

n

pnPn(x, p) (49)

where the Pn(x, p) are precisely the oscillator Wigner functions encountered at
(43.7), and where the weights pn are given by

pn = (−)n 1
b2

∫ ∞

0

e−
1
2 [1+ 1

b2
]zLn(z) dz = 2

b2+1

[
b2−1
b2+1

]n

It will be observed that
•

∑
n pn = 1 for all values of b;

• if b = 1 then p0 = 1 and all other pn vanish;
• the pn are non-negative for all values of n if and only if b � 1; violation of

the minimality condition would therefore place us in violation of a
fundamental principle of probability theory.

Remarkably, the pn can be described

pn = 1
Z e−β(n+ 1

2 ) with Z =
∞∑

n=0

e−β(n+ 1
2 ) =

e−
1
2 β

1 − e−β

provided we use

e−β = b2−1
b2+1 ; i.e., b2 = coth 1

2β

to relate β to the fatness parameter b. Interestingly, the mathematical theory of
fat Gaussians (48) has—on its face—nothing to do with the quantum physics
of oscillators (and even less to do with the thermodynamics of equilibrated
populations of such oscillators), but if we write β ≡ �ω/kT then the two subjects
turn out to be one and the same! In short: “fat Gaussians” are hot Gaussians.36

36 Related results—differently motivated—are developed in §§2.4 & 4.4 of
Hillery et al .19
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Equation (49) provides a representation of a statement of the form

ρρρ fat =
∑

n

pnρρρn (50)

where the ρρρn project onto states (oscillator eigenstates) which are known to be
orthonormal. So (49)↔(50) refer in fact to the spectral representatiuon of ρρρ fat.

Does the fat Gaussian P (x, p ;σσσ,λλλ) admit of (evidently non-spectral)
representation more in line with (47)? Indeed it does, for if (borrowing notation
from (0–98))

g(x;σ) ≡ 1
σ
√

2π
exp

{
− 1

2

[
x
σ

]2}

then ∫
g(x − x0;σ)g(x0;u) dx0 = g

(
x;

√
σ2 + u2

)

= g(x;σσσ) with b =
√

1 + (u/σ)2

So we have

P (x, p ;σσσ,λλλ) =
∫∫

P (x − x0, p − p0;σ, λ)w(x0, p0) dx0dp0 (51)

if we set

w(x0, p0) = g(x0;u)g(p0, v) with
{

u = σ
√

b2 − 1
v = λ

√
b2 − 1

Notice that w(x0, p0) → δ(x0)δ(p0) as b ↓ 1. In (51) a fat Gaussian P (x, p ;σσσ,λλλ)
is portrayed as a “smeared minimal Gaussian.” And that the smear function
has been adapted to the Gaussian we intended to smear: to achieve σσσ/λλλ = σ/λ
we had to set u/v = σ/λ. Had we not done so, the smeared Gaussian would
have become a fat Gaussian of altered figure.

Husimi’s and other modifications of the Weyl-Wigner transforms. We have seen
that

ψgaussian(x) −−−−−−−−−→
Wigner

Pminimal gaussian(x, p)

and have observed that the non-negativity of Pminimal gaussian(x, p) is atypical—
so atypical as to be (I am tempted to conjecture) unique.37 Let us adopt a
simplified notation ψgaussian(x) ≡ ψ0(x) = (x|ψ0), intended in part to recall to
mind the fact that |ψ0) is the groundstate of some oscillator. We learned at
(31) that if |ϕ) is any state orthogonal to |ψ0) then

|(ψ0|ϕ)|2 = h

∫∫
Pψ0(x, p)Pϕ(x, p) dxdp = 0 (52)

37 Other non-negative Wigner functions exist in abundance, but—so runs
the conjecture—are in every other case representative of mixtures. The terms
“minimal dispersion,” “Gaussian” and “pure state non-negativity” would, if the
conjecture were confirmed (I possess no counterexample) become synomymous.
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which, since Pψ0(x, p) is nowhere negative, clearly forces Pϕ(x, p) to assume
occasionally negative values.38

Because—as I have already twice remarked12—I consider quantum theory
to be a “profoundly strange subject, entitled to its quirks” I have always been
inclined to look upon the circumstance that Wigner distributions are actually
quasi-distributions, which assume occasionally negative values as a small price
to pay for the insights provided by the Weyl-Wigner-Moyal formalism. But for
some people, in some contexts, it is a price too great. Some such people39 take
the view that the formalism should simply be abandoned, others40 the view
that it stands in need of “repair.”

The standard mode of repair was first described by K. Husimi,41 and later
rediscovered by (among others) N. Cartwright.42 The basic idea43 is elementary.
The “displaced minimal Gaussian”

G(x − x0, p − p0) ≡ 1
σ
√

2π
1

λ
√

2π
exp

{
− 1

2

[
x−x0

σ

]2 − 1
2

[
p−p0

λ

]2} (53)

—regarded as a Wigner distribution on
{
x,p

}
-space—refers, for each assignment

of the parameters
{
x0, p0

}
, to a pure state; namely, to a “launched oscillator

ground state,” as was seen at (45.7). Call that state |ψ00). The important point
is that there exists such a state (as will be the case if and only if σ and λ satisfy
the minimality condition σλ = 1

2� ). For that fact, by (31), insures that

|(ψ00|ψ)|2 = h

∫∫
G(x′ − x0, p

′ − p0)Pψ(x′, p ′) dx′dp ′ � 0 : all x0, p0

38 This pretty argument is Wigner’s own, and is consonant with the evidence
of Figure 1.

39 See, for example, P. R. Holland, The Quantum theory of Motion: An
Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics
(), §8.4.3.

40 R. F. Fox & T. C. Elston, “Chaos and a quantum-classical correspondence
in the kicked pendulum,” Phys. Rev. E 49, 3683 (1994) and “Chaos and a
quantum-classical correspondence in the kicked top,” Phys. Rev. E 50, 2553
(1994).

41 “Some formal properties of the density matrix,” Proc. Physico-Math. Soc.
of Japan 22, 264 (1940). It was, by the way, Ronald Fox who, on a recent visit
to Reed College, directed my attention to Husimi’s work. For indication of the
locus of Kôdi Husimi’s thought see p. 354 in Max Jammer’s The Philosopy of
Quantum Mechanics (). On pp. 422–425 Jammer has things to say about
the general placement of the phase space formalism.

42 “A non-negative Wigner-type distribution,” Physica 83A, 210 (1976).
Nancy Cartwright is a philosopher of science at Stanford. The concluding essay
“How the measurement problem is an artifact of the mathematics” in her How
the Laws of Physics Lie () may be of some continuing interest to some
readers.

43 I follow R. F. O’Connell & E. P. Wigner, “Some properties of a non-negative
quantum-mechanical distribution function,” Physics Letters 83A, 121 (1981).
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Dropping the subscripts 0 and drawing upon an obvious symmetry of G, we are
led to what might be called “Husimi’s adjustment:”

Pψ(x, p)
|| Husimi
↓
PPPψ(x, p) ≡ h

∫∫
G(x − x′, p − p ′)Pψ(x′, p ′) dx′dp ′ (54)

where, though my notation does not say so, the precise meaning of G awaits
assignment of a value to σ (the consequent value of λ being then determined).
The right side of (54) has precisely the convolutional structure encountered
already at (47). My “poor man’s bold” notation is intended to suggest that PPPψ

is a smeared companion of Pψ; other authors use a subscripted S to that same
end. For the reasons already discussed,

PPPψ(x, p) � 0 everywhere on phase space (55.1)

and from an elementary property of G if follows that
∫∫

PPPψ(x, p) dxdp =
∫∫

Pψ(x′, p ′) dx′dp ′ = 1 (55.2)

so PPPψ(x, p) answers to all the requirements of a proper probability distribution.
The conditions (55) jointly insure that

h

∫∫
PPPψ(x, p) dxdp < 1

which by (34) informs us that PPPψ(x, p) is representative of a mixture, and by
an easy line of argument we see that Husimi’s PPPψ(x, p) inherits from (26) the
same upper bound as limited its Wignerian precursor:

0 � PPPψ(x, p) � 2
h (56)

To illustrate the effect of Husimi’s adjustment we look back again to the
harmonic oscillator. The Wigner distributions descriptive of the ground state
and first two excited states were—in dimensionless variables—described at (25)
and plotted in Figure 1. Taking the “Husimi smear function” to be just the
ground state Gaussian (as seems most natural in this context) we compute

PPP 0(x, p) = 1
2

2
he−

1
4E

PPP 1(x, p) = 1
8

2
he−

1
4E · E

PPP 2(x, p) = 1
64

2
he−

1
4E · E2




(57)

which (recall E ≡ κ
2 + ℘2) are manifestly non-negative, and plotted in the

following figure. With the assistance of Mathematica we readily confirm
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Figure 6: Husimi transforms (57) of the Wigner functions (25) for
the three lowest-lying energy eigenstates of a harmonic oscillator.
The former “regions of negativity”—evident in Figure 1—have been
extinguished.

Figure 7: Husimi transform of the Wigner function for the tenth
state of a harmonic oscillator. The design is barely evident in the
plot of PPP 2(x, p), but typical of PPPn(x, p) for n large.
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(use dxdp = h
2

1
2π dκd℘) that

∫∫
P0(x, p) dxdp = + 1

2π

∫∫
e−

1
2E dκd℘ = 1

∫∫
P1(x, p) dxdp = − 1

2π

∫∫
e−

1
2E(1 − E) dκd℘ = 1

∫∫
P2(x, p) dxdp = + 1

2π

∫∫
e−

1
2E(1 − 2E + 1

2E2 ) dκd℘ = 1

h

∫∫
P 2

0 (x, p) dxdp = 1
π

∫∫
e−

1
4E dκd℘ = 1

h

∫∫
P 2

1 (x, p) dxdp = 1
π

∫∫
e−

1
4E(1 − E)2 dκd℘ = 1

h

∫∫
P 2

2 (x, p) dxdp = 1
π

∫∫
e−

1
4E(1 − 2E + 1

2E2 )2 dκd℘ = 1

∫∫
PPP 0(x, p) dxdp = 1

2π

∫∫
1
2 e−

1
4E dκd℘ = 1

∫∫
PPP 1(x, p) dxdp = 1

2π

∫∫
1
8 e−

1
4E · E dκd℘ = 1

∫∫
PPP 2(x, p) dxdp = 1

2π

∫∫
1
64e−

1
4E · E2 dκd℘ = 1

but
h

∫∫
PPP 2

0 (x, p) dxdp = 1
π

∫∫ [
1
2 e−

1
4E

]2
dκd℘ = 1

2 < 1

h

∫∫
PPP 2

1 (x, p) dxdp = 1
π

∫∫ [
1
8 e−

1
4E · E

]2
dκd℘ = 1

4 < 1

h

∫∫
PPP 2

2 (x, p) dxdp = 1
π

∫∫ [
1
64e−

1
4E · E2

]2
dκd℘ = 3

16 < 1




(58)

The latter inequalities inform us that the Husimi distributions PPP 0, PPP 1, PPP 2, . . .
refer to mixtures. We have already seen at (49) that the first of those can in
spectral representation be displayed as a thermally weighted sum of oscillator
eigenstates. I suspect that generating function techniques could be used to
show that suitably altered weightings of those same Wigner functions supply
representations of PPPn (n = 1, 2, . . .), and the detailed argument would be
both analytically interesting and physically informative . . .but must save that
discussion for another occasion.

With coaxing, Mathematica has labored heroically to obtain

PPP 10(x, p) = 2
h

1
7610145177600e−

1
4E · E10

and, on the basis of this and preceding results, are led to speculate that it may
be possible (and not too difficult) to show analytically that in the general case

PPPn(x, p) = 2
h

1
2·4nn!e

− 1
4E · En (59)
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Figure 8: The functions fn(κ) ≡ 1
2π

1
2·4nn!e

− 1
4 κ

2 · κ
2n, which

describe radial cross-sections of Husimi surfaces such as that shown
in Figure 7, are plotted for n = 10, 12, 14, 16, 18, 20. The volume
under such a curve-of-revolution can be described∫ ∞

0

fn(κ) · 2πκ dκ = 1 : all n

since the integral is readily brought to the form of the Euler integral
that defines the gamma function Γ (n + 1).

The Husimi distribution PPP 10(x, p) is plotted in Figure 7, which shows what
we might describe as a “circular Gaussian ridge,” centered on the (κ, ℘)-plane.
Radial sections of the nth such ridge are described by the function fn(κ) plotted
above. From f ′

n(κ) = (numeric) · e− 1
4 κ

2 · κ
2n−1(− 1

2κ
2 + 2n) = 0 we find that

the
radius κn of the nth Gaussian ridge =

√
4n

which in dimensioned physical variables13 becomes

xn =
√

2�n/mω = classical amplitude of oscillator with energy �ωn

In physical variables the annular ridge becomes elliptical, and peaks at the
classical orbit of energy En.

One might anticipate that when one looks to the time-dependent theory
one will see something like Gaussians moving along classical trajectories. But,
as will emerge, that aspect of our subject provides some surprises.

Selection of a smear function (taken above to be the ground state Gaussian)
is largely arbitrary. Selection of an alternative would change fine details, but
leave unchanged the qualitative essentials of the results obtained above (or so
I assert: the point merits closer examination).
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In Chapter 1 I sketched—and in a recent seminar44 have elaborated upon—
a “theory of imperfect quantum measurement devices.” The essential idea was
that, whereas the devices contemplated by the standard quantum theory of
measurement45 prepare (and announce that they have prepared) pure states,
imperfect devices prepare mixtures; I wrote

ρρρ in −→ A-meter announces “a0” −→ ρρρout = ρρρ(a0) (60)

and proceeded from the presumption that ρρρ(a0) could be described

ρρρ(a0) ≡
∫

|a)(a| · p(a0; a) da

where in a typical case p(a0; a) = 1
σ
√

2π
exp

{
− 1

2

[
a−a0

σ

]2}. I proposed, in other
words, to “smudge the spectrum,” to do my smearing on the spectral line.
Husimi, however, has given us an alternative—and perhaps more natural—way
to accomplish the same root objective.

Suppose we adopt Wignerian language to describe the action of an ideal
device:

P in(x, p) −→ A-meter announces “a0” −→ Pout(x, p ; a0) (60.1)

Here Pout(x, p ; a0) refers to a pure state: (x|a0) −−−−−−−→
Wigner

Pout(x, p ; a0).

To arrive at a modified theory of imperfect devices we have now to make
only one tiny adjustment:

P in(x, p) −→ A-meter announces “a0” −→ PPP out(x, p ; a0) (60.2)

where
Pout(x, p ; a0) −−−−−−−→

Husimi
PPP out(x, p ; a0)

The smear operation is located now not on the spectral line, but in phase space.
We have gained more secure contact with classical mechanics (which may or may
not be a recommendation). And—if our experience with “fat Gaussians” can
be generalized—may have positioned ourselves to speak in a natural way about
a “temperature” characteristic of the noise introduced by the measurement
process.

Wigner’s innovation |ψ) −→ Pψ(x, p) makes it possible to contemplate
assigning an “entropy” to pure quantum states

S[|ψ)] ≡ −
∫∫

Pψ(x, p) log Pψ(x, p) dxdp (61.1)

44 “Quantum measurement with imperfect devices” ( February ).
45 See, for example, J. Schwinger, Quantum Kinematics & Dynamics (),

Chapter 1; or Kurt Gottfried, Quantum Mechanics I: Fundamentals (),
Chapters IV & V.
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but at some cost . . . for at points where Pψ(x, p) becomes negative, log Pψ(x, p)
becomes complex . The proposed definition (61.1) leads to a notion of “complex
entropy,” and it is not at all clear that such a notion is viable.46 But Husimi’s
adjustment, because it kills negativity (by diverting our attention from pure
states to certain associated mixtures) permits us to contemplate a definition

S[|ψ)] ≡ −
∫∫

PPPψ(x, p) logPPPψ(x, p) dxdp (61.1)

free from the complexity defect (if defect it be). Working from (59) to see what
that revised definition has to say in the case of an oscillator, we have

Sn = −
∫∫ [

1
2π

1
2·4nn!e

− 1
4E · En

]
log

[
1
2π

1
2·4nn!e

− 1
4E · En

]
dκd℘

Introduce polar coordinates onto the dimensionless phase plane and obtain

=
∫ ∞

0

[
1
2π

1
2·4nn!e

− 1
4 r2 · r2n

]{
1
4r2 − 2n log r + log(2π 2 ·4nn!)

}
2πr dr

= 1 + n + log n! − nPolyGamma[0, n + 1] + log 4π (62.1)

where what Mathematica calls PolyGamma[0,z] is just the digamma function
ψ(z) ≡ d

dz log Γ (z): see Chapter 44 of Spanier & Oldham.21 Quick numerical
calculation gives

S0 = 3.53102
S1 = 4.10824
S2 = 4.37860...

S10 = 5.11721 ∼ 5.16558...
S100 = 6.25421 ∼ 6.25919...

S1000 = 7.40401 ∼ 7.40451...
S10000 = 8.55515 ∼ 8.55520

while standard asymptotic expansions47

log Γ (z) ∼ log
√

2π − z + (z − 1
2 ) log z + 1

12z + · · ·
ψ(z) ∼ log z − 1

2z − 1
12z2 + · · ·

can be used to establish that as n becomes large we have

Sn ∼
(

1
2 + log 4π

√
2π

)
+ 1

2 log(n + 1) + 1
6n − · · · (62.2)

which was used to produce the second column of numbers. The accuracy of the

46 I have explored the matter in §13 of “Gaussian wavepackets” (), with
inconclusive results.

47 See 43:6:7 and 44:6:5 in Spanier & Oldham.
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approximation is impressive, but the point of deeper significance is that

Sn ∼ log
√

n ∼ log
√

phase area enveloped by nth isoenergetic circle
∼ log

{
circumference of nth isoenergetic circle

}
(63)

What is the “deeper significance” of this result (which, by Sn = −〈logPPPn〉,
is an almost-obvious consequence of the design of Figure 7)? In statistical
mechanics one learns to associate “entropy” with “log of the density of states,”
and the latter concept with the “area of the isoenergetic surface.”48 In (63)
we have obtained a similar result, even though the physical system has only a
single degree of freedom (instead of the “very many” postulated by statistical
mechanics), and we have made no evident use of the concept of “thermal
equilibrium.”

One should be aware that methods alternative to Husimi’s method for
constructing non-negative phase distributions have been devised, and found to
offer advantages in certain contexts.49 In view of the logic of the situation

husimi decorated wigner implicit in weyl

it is perhaps not surprising that those who first labored in this vinyard—mainly
quantum opticians (who seem to have been ignorant of Husimi’s work), together
with a few people interested in quantum dynamical fundamentals—cultivated
an interest in alternatives to the Weyl correspondence (7). Many of the results
they achieved are interesting, but in my opinion they do not displace the historic
main sequence of ideas.50

Dynamical motion of Wigner/Husimi distributions. We have several times had
occasion to observe that the eigenkets of the Hamiltonian,51 when launched into
dynamical motion, simply sit there and buzz: |n) → e−iωnt|n). Harmonically
and unobservably , since when we construct (n|e+iωnt Ae−iωnt|n)—here A is any
observable with a steady definition—the buzz factors cancel. Cryptic quantum

48 See mathematical thermodynamics (), p. 72; or A. I. Khinchin,
Mathematical Foundations of Statistical Mechanics (), pp. 33–35.

49 See Y. Kano, “A new phase-space distribution function in the statistical
theory of the electromagnetic field,” J. Math. Phys. 6, 1913 (1965). Wigner18

refers also to some others.
50 See R. J. Glauber, “Coherent & incoherent states of the radiation field,”

Phys. Rev. 131, 2766 (1963); L. Cohen, “Generalized phase-space distribution
functions,” J. Math. Phys. 7, 781 (1966); G. S. Agarwal & E. Wolf, “Calculus
for functions of noncommutative operators and general phase-space methods
in quantum mechanics. I. Mapping theorems and ordering of functions of
noncommuting operators,” Phys. Rev. D 2, 2162 (1970) and “. . . II. Quantum
methods in phase space,” Phys. Rev. D 2, 2187 (1970). Also S. S. Schweber,
“On Feynman quantization,” J. Math. Phys. 3, 831 (1962). All of those papers
provide elaborate bibliographies, but none contains a reference to Husimi.

51 We assume the Hamiltonian to be time-independent, and work in the
Schrödinger picture.
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motion becomes manifest quantum motion only when |ψ)0 has been assembled
by superposition of at least two eigenkets:

|ψ)0 = c1|n1)0 + c2|n2)0 with |c1|2 + |c2|2 = 1

Then (ψ|A |ψ) dithers; i.e., it exhibits a t-dependence of the form

(ψ|A |ψ) = a + b cos(ωt + δ) with ω ≡ (E2 − E1)/�

and will execute more complicated motion if more than two eigenkets are
included in the superposition. In the interest of brevity, I illustrate this and
subsequent points by looking again to the harmonic oscillator, reserving more
general commentary for another occasion; I work in the familiar dimensionless
variables,13 and entrust all the labor to Mathematica.51

Look to the oscillator state |ψ) = 1√
2
|2)+ 1√

2
|3), which in κ -representation

at time t becomes

ψ(κ, t) = 1√
2
Ψ[2, κ ]e−iω[2+ 1

2 ]t + 1√
2
Ψ[3, κ ]e−iω[3+ 1

2 ]t (64)

giving

|ψ(κ, θ)|2 = 1
2Ψ[2, κ ]Ψ[2, κ ] + Ψ[2, κ ]Ψ[3, κ ] cos θ + 1

2Ψ[3, κ ]Ψ[3, κ ] (65)

where θ ≡ ωt signifies “dimensionless time” (phase). The intent of (65) is
illustrated below, but animation52 makes a much more vivid statement; frames

Figure 9: Equation (65) asks us to add the outer functions to a
cos θ-modulated copy of the central function.

51 My reader is encouraged to do computation in parallel with the text, so as
to be in position to run the animations in which it will culminate. To that end,
define He[n ,x ]:=(1/

√
2n)HermiteH[n,x/

√
2] and

Ψ[n ,x ]:=(1/
√
n!

√
2π)Exp[- 1

4x
2]He[n,x]

Verify that
∫

Ψ[m, x ]Ψ[n, x ] dx = δmn. Further instruction will be provided as
we proceed.

52 Use Table[Plot[ 1
2Ψ[2,x]2 +Ψ[2,x]Ψ[3,x]Cos[ 2π

20 n]+
1
2Ψ[3,x]2,{

x,-10,10
}
, PlotRange->

{
0,0.5

}
],

{
n,0,19

}
] to construct a set of twenty

figures. Select those, and from the Cell Menu select Animate Selected Graphics.
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Figure 10: Frames from an animation of (65). The figure is to
be scanned like the page of a book. Successive frames correspond to
θ = nπ

4 with n = 0, 1, 2, 3, 4, 5. The function sloshes from right to
left, and starts back again.

from such a filmstrip are presented above.

Look now to what Wigner has to say about such a situation. In our familiar
dimensionless variables we have

Pψ(κ, ℘) = 1
2π

∫
ψ∗(κ + ξ)ei℘ξψ(κ − ξ) dξ

which, when we take ψ to be given by (64), becomes

Pψ(κ, ℘; θ) = P22(κ, ℘) +
{
P23(κ, ℘; θ) + conjugate

}
+ P33(κ, ℘)

where, according to Mathematica (compare (25)),

P22(κ, ℘) ≡ 1
2π

∫
1√
2
Ψ[2, κ + ξ ]ei℘ξ 1√

2
Ψ[2, κ − ξ ] dξ

= + 1
2

1
2π e−

1
2E(1 − 2E + 1

2E
2 )
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P33(κ, ℘) ≡ 1
2π

∫
1√
2
Ψ[3, κ + ξ ]ei℘ξ 1√

2
Ψ[3, κ − ξ ] dξ

= − 1
2

1
2π e−

1
2E(1 − 3E + 3

2E
2 − 1

6E
3 )

P23(κ, ℘; θ) ≡ e−iθ · 1
2π

∫
1√
2
Ψ[2, κ + ξ ]ei℘ξ 1√

2
Ψ[3, κ − ξ ] dξ

= e−iθ · 1
2

1
2π

6√
3
(κ − i℘)(1 − E + 1

6E2 )

Assembling these results, we obtain

Pψ(κ, ℘; θ) = 1
2

1
2π e−

1
2E

{
(E − E2 + 1

6E
3 ) (66)

+ 12√
3
(1 − E + 1

6E2 )(κ cos θ − ℘ sin θ)
}

and verify that indeed
∫∫

Pψ(κ, ℘; θ) dκd℘ = 1. Note that the θ-dependent
terms are odd functions of κ and ℘, so can make no net contribution to the
integral.

Animation is the only way to grasp the story that (66) is trying to tell
. . .but a memory hog. In Figure 11 we see six frames (again: θ = nπ

4 with
n = 0, 1, 2, 3, 4, 5) taken from such a filmstrip. Note that the central asymmetry
of the surface, and its steady rotation, have appeared spontaneously: we have
done nothing so artificial as to “displace a copy of the groundstate Gaussian,
release it, and watch it slosh back and forth.”53 Though we are deep within
the quantum realm, the phase space formalism has exposed a motion strongly
suggestive of classical oscillator motion . . .but this, I think, is deceptive—an
artifact of the circumstance that |ψ) was constructed by superposition of only
two energy eigenkets, and therefore contains only a single effective frequency.

Now take P0(κ, ℘) = 1
2π e−

1
2E and look to the Husimi transform of (66).

Mathematica, with a little gentle coaxing, supplies

PPPψ(κ, ℘; θ) =
∫∫

P0(κ − κ
′, ℘ − ℘ ′ )Pψ(κ ′, ℘ ′) dκ

′d℘ ′

= 1
3072π e−

1
2E · E2

(
12 + E + 4

√
3(κ cos θ − ℘ sin κ)

)
(67)

Again we compute
∫∫

PPPψ(κ, ℘; θ) dκd℘ = 1, which provides a weak check on
the accuracy of the θ-independent terms in (67), but I have nothing sharp to
say about the significance of the numerator: 3072 = 210 · 3. Frames from the
animation of (67) are displayed in Figure 12.

53 See, for example, L. I. Schiff, Quantum Mechanics (3rd edition ) p. 74
or quantum mechanics (), Chapter 2, pp. 89–93. This topic was first
explored by Schrödinger himself, in . An English translation of that paper,
bearing the title “The continuous transition from micro- to macro-mechanics”
can be found in his Collected Papers on Wave Mechanics (3rd English edition
).
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Figure 11: Frames from an animation of (66), showing the Wigner
transforms of the progressively evolved wave functions whose moduli
are shown in Figure 10. The surface appears to spin clockwise about
the origin.
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Figure 12: Husimi transforms of the Wigner functions shown in
the preceding figure. The progressive rotation is now more strikingly
apparent. That the Husimi distribution is everywhere non-negative
is made more vividly evident in the following figure.
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Figure 13: Superimposed plots of the central cross-sections (℘ = 0)
of the θ = 0 Wigner/Husimi functions shown at upper left in
Figures 11/12. The Husimi function—here multiplied by five to
enhance clarity, and shown in red—never becomes negative, but does
fall to zero at κ = 0 and κ = −2

√
3 = −3.4641.

It would be interesting and useful to examine other cases, other systems
in order to gain a sharper sense of how generally applicable are the insights to
which the oscillator has led us . . .but that is an undertaking which I must, for
the moment, be content to reserve for an occasion when I have more time and
more computer memory at my disposal. But I cannot in good conscience move
on without remarking that in one important respect the physics to which Figure
12 alludes is a swindle. For the process we have been talking about might be
diagrammed

P (x, p ; 0) −−−−−−−−−−−−−−−−−−−−−→
dynamical evolution by (38)

P (x, p ; t)
|
↓
PPP (x, p ; t)

while the process we should have been talking about flows

P (x, p ; 0)
|
↓
PPP (x, p ; t) −−−−−−−−−−−−−−−−−−−−−→

dynamical evolution by (38)
PPP (x, p ; t)

The distinction is profound, and was first explored by O’Connell & Wigner.19

It would, however, take me too far afield to pursue the matter here.
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Quantum mechanics as a theory of interactive moments. Folklore alleges, and in
some texts54 it is explicitly—if, as will emerge, not quite correctly—asserted,
that “quantum mechanical expectation values obey Newton’s second law.” The
pretty point here at issue was first remarked by Paul Ehrenfest (–),
in a paper scarcely more than two pages long.55 Concerning the substance
and impact of that little gem, Max Jammer, at p. 363 in his The Conceptual
Development of Quantum Mechanics (), has this to say:

“That for the harmonic oscillator wave mechanics agrees with
ordinary mechanics had already been shown by Schrödinger 53. . .
A more general and direct line of connection between quantum
mechanics and Newtonian mechanics was established in 1927 by
Ehrenfest, who showed ‘by a short elementary calculation without
approximations’ that the expectation value of the time derivative
of the momentum is equal to the expectation value of the negative
gradient of the potential energy function. Ehrenfest’s affirmation of
Newton’s second law in the sense of averages taken over the wave
packet had a great appeal to many physicists and did much to further
the acceptance of the theory. For it made it possible to describe
the particle by a localized wave packet which, though eventually
spreading out in space, follows the trajectory of the classical motion.
. . .Ehrenfest’s theorem and its generalizations by Ruark56. . . do not
conceptually reduce quantum dynamics to Newtonian physics. They
merely establish an analogy—though a remarkable one in view of
the fact that, owing to the absence of a superposition principle in
classical mechanics, quantum mechanics and classical dynamics are
built on fundamentally different foundations.”

The basic idea is elementary. Recall that the dynamical motion of
〈A〉 ≡ (ψ|A |ψ) can be described d

dt 〈A〉 = 1
i� 〈AH−HA〉 (which is, as it happens,

picture-independent), so we can in particular write

d
dt 〈x〉 = 1

i� 〈[x , H ]〉
d
dt 〈p〉 = 1

i� 〈[p , H ]〉

But if H =
ppp

[
Hpx(x, p)

]
xxx

=
∑

(terms of the form pm xn) then

[x , H ] =
∑

(terms of the form +i� ·mpm−1 xn) = +i�
ppp

[∂Hpx

∂p

]
xxx

[p , H ] =
∑

(terms of the form −i� · n pm xn−1) = −i�
ppp

[∂Hpx

∂x

]
xxx

54 See, for example, Griffiths, p. 17, Problem 1.12.
55 “Bemerkung über die angenäherte Gültigkeit der klassichen Machanik

innerhalb der Quanatenmechanik,” Z. Physik 45, 455–457 (1927).
56 The allusion here is to A. E. Ruark, “. . . the force equation and the virial

theorem in wave mechanics,” Phys. Rev. 31, 533 (1928).
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Alternatively/equivalently (and with only the superficial appearance of bias in
favor of the Weyl correspondence) we might write

H ←−−−−−−−−−
Weyl

H(x, p)

and use (17.2) to obtain

[x , H ]←−−−−−−−−−
Weyl

i� [x, H ] = +i�∂H
∂p

[p , H ]←−−−−−−−−−
Weyl

i� [p, H ] = −i�∂H
∂x

Or, in service of notational simplicity, we might assume the Hamiltonian to
have the specific form H = 1

2m p2 + U(x); it is then unarguable that

[x , H ] = +i� 1
m p

[p , H ] = −i� U ′(x)

giving
d
dt 〈x〉 = 1

m 〈p〉
d
dt 〈p〉 = −〈U ′(x)〉

}
(68)

It is to the latter class of systems that I shall—for the moment, as a matter of
expository convenience—confine my specific remarks.

The first moments 〈x〉 and 〈p〉 will move “classically” only under those
special circumstances which permit one to write 〈U ′(x)〉 = U ′(〈x〉). In classical
statistical mechanics this would be achieved if P (x, p) referred in fact to a “Dirac
spike” in classical motion, but in quantum mechanics that degree of localization
is disallowed (would be in conflict with the Heisenberg uncertainty principle).
We are forced, therefore, to require that U ′(x) depend at most linearly on x:

U ′ = ax + b : entails U(x) = 1
2ax2 + bx + c

This class of special cases includes the free particle, the particle in free fall and
the harmonic oscillator; we are brought back, in short, to the famously tractable
class of systems in which H(x, p) depends at most quadratically on x and p. Let
us look in this light to the

moment theory of the harmonic oscillator Given the Hamiltonian
H = 1

2m p2 + 1
2mω2 x2 we look to the motion of 〈p〉

d
dt 〈p〉 = 1

i� 〈[p , H ]〉 = −mω2〈x〉 (69.1)

and find ourselves forced to look also to the motion of 〈x〉:

d
dt 〈x〉 = 1

i� 〈[x , H ]〉 = 1
m 〈p〉 (69.2)
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In (69) we have a closed system—a coupled pair of 1st-order differential
equations, which conjointly entail d2

dt2 〈x〉t + ω2〈x〉t = 0, giving (if we start
our clock at the appropriate instant)

〈x〉t = 〈x〉max cos ωt (69.3)

The remarkable implication is that for all pure states |ψ)—as, indeed, for all
mixtures ρρρ —the first moment 〈x〉t oscillates with angular frequency ω (see again
Figure 10), as also does 〈p〉t: returning with (69.3) to (69.2) we have

〈p〉t = −〈p〉max cos ωt (69.4)
〈p〉max = mω 〈x〉max

For energy eigenstates (also for mixtures of such states, but not for
superpositions) the t-dependence must drop away; this, by the design of (69.3/4),
entails that

〈x〉any eigenstate = 〈p〉any eigenstate = 0 (69.5)

which is a statement commonly attributed to parity properties of the oscillator
eigenstates, but which has here been obtained without solving any differential
equations, without exhibiting/examining the explicit descriptions of any
eigenfunctions.

Look now to the motion of 〈p2〉 (which must not be confused with 〈p〉2).
From

d
dt 〈p

2〉 = 1
i� 〈[p

2, H ]〉 = −ω2〈 12 (x p + p x)〉 (70.1)

we acquire an unanticipated interest in the motion of 〈 12 (x p + p x)〉

d
dt 〈 12 (x p + p x)〉 = 1

i� 〈[ 12 (x p + p x), H ]〉 = 〈 1
m p2 −mω2 x2 〉 (70.2)

whence in the motion also of 〈( 1
m p2 −mω2 x2)〉:

d
dt 〈( 1

m p2 −mω2 x2)〉 = 1
i� 〈[( 1

m p2 −mω2 x2), H ]〉 = −4ω2〈 12 (x p + p x)〉 (70.3)
d
dt 〈( 1

m p2 + mω2 x2)〉 = 0 by energy conservation (70.4)

But here the forced additions to our list of “operators of interest” stop, for were
we to continue the procedure we would be led to the operators

C ≡ 1
2 (x p + p x) and D ≡ 1

m p2 −mω2 x2 (70.5)

in alternating sequence (the procedure has, in other words, terminated), and
would have been led promptly to that same sequence had we started from d

dt 〈x2〉.
We conclude from the design of (70.2/3) that in both cases the associated
expectation values satisfy an equation of the form

d2

dt2 〈A〉t + 4ω2〈A〉t = 0 ⇒ oscillation with doubled frequency
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Let us agree to write
〈C 〉t = C sin(2ωt + δ) (70.6)

Then (70.2) supplies
〈D〉t = 2ωC cos(2ωt + δ) (70.7)

while by (70.1)
〈p2〉t = P 2 + 1

2ωC cos(2ωt + δ) (70.8)

where P 2 � 1
2ωC is a constant of integration. Similarly

〈x2〉t = X2 − 1
m2ω2

1
2ωC cos(2ωt + δ) (70.9)

The integral of (70.4) serves to interrelate those second moments:

1
2m 〈p

2〉t + 1
2mω2〈x2〉t = 1

2mP 2 + 1
2mω2X2 = E (70.10)

To summarize: simple coupled differential equations serve universally (i.e.,
without reference to the specific pure/mixed state of the quantum system)
to describe the motion of the moments, and equalities/inequalities serve to
relate/constrain the constants which appear in the solutions of those equations.
In the example just studied, we found
• the motion of 1st moments to be . . .
• decoupled from the (frequency doubled) motion of 2nd moments, which is
• decoupled from the (frequency trebled) motion of 3rd moments . . .

and, moreover, that all moments move classically (the differential equations
contain no exposed �-factors). But the former circumstance is special to the
oscillator , and the latter special to systems with quadratic Hamiltonians. To
gain a glimpse of the more typical situation, consider the system

H = 1
2m p2 + 1

4k x4 (71.1)

The classical equations of motion read

ṗ = −kx3

ẋ = 1
mp

while Ehrenfest’s theorem (68) supplies

d
dt 〈p〉 = −k〈x3〉
d
dt 〈x〉 = 1

m 〈p〉

}
(71.2)

from which we acquire an obligation to study the motion of 〈x3〉. Tedious
computation gives

d
dt 〈x

3〉 = 3
2m 〈(x2 p + p x2)〉

d
dt 〈(x2 p + p x2)〉 = 1

2m 〈(x2 p + 2x p x + p x2)〉 − 8
3k〈x5〉

...
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Pretty clearly (since H introduces factors faster that [x, p] = i�1 can kill
them), these equations comprise only the leading members of an infinite system
of coupled first-order linear differential equations. Other such systems inter-
relate such moments as are absent from the preceding system. The design
of the complete set of systems is latent in the design of H ; state data is
written into the initial values of those moments. The intricate relationships
which serve to distinguish possible initial values from impossible . . . are, for
the most part, H-dependent, and resist general description.57 But one class of
universal constraints was identified by Schrödinger (), and is of invariably
fundamental importance.58 Let (∆A)2 ≡ 〈(A − 〈A〉)2〉. Then—in consequence
ultimately of the Schwarz inequality—one for all observables A and B has

(∆A)2(∆B)2 ≥
〈AB− BA

2i

〉2

+
{〈AB + BA

2

〉
− 〈A〉〈B〉

}2

(72.1)

which in a particular case (A �→ x, B �→ p) entails

(∆x)2(∆p)2 ≥ (�/2)2 +
{〈xp + px

2

〉
− 〈x〉〈p〉

}2

(72.2)

Schrödinger’s inequality (72.1) provides a sharpened/generalized statement of
the Heisenberg uncertainty principle.

At (72.2) we encounter once again the observable C ≡ 1
2 (x p + p x) which

at (70.5) was recommended to our attention by the physics of an oscillator, and
which we first met when we had occasion to observe that

xp −−−−−−−−−−−−→
Weyl

1
2 (x p + p x)

Its most recent occurance can be understood as follows: Let P (x, p) be a
bi-variate distribution function in a pair of real random variables, x and p.
One has 〈xmpn〉 =

∫∫
xmpnP (x, p) dxdp. If x and p were independent random

variables, then P (x, p) would factor—P (x, p) = f(x)·g(p)—and we would have
〈xmpn〉 = 〈xm〉〈pn〉. The constructions Cm,n ≡ 〈xmpn〉−〈xm〉〈pn〉 serve (when
they fail to vanish) to provide quantitative indication of the degree to which
x and p fail to be statistically independent; i.e., of their “correlation.” The
leading such indicator is the

“correlation coefficient” ≡ 〈(x− 〈x〉)(p− 〈p〉)〉 =
{
〈xp〉 − 〈x〉〈p〉

}
On the right side of (72.2) we have encountered the obvious quantum analog of
that construction.

57 Their description in particular cases is, however, worth the effort. For
eigenstates are states that bring all moments to rest. The search for eigenstates
is, therefore, equivalent to a search for fixed points in the moment problem.

58 See “Remarks concerning the status & some ramifications of Ehrenfest’s
theorem” (), p. 7 for the proof and some historical references.
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Continuing the preceding (pre-quantum mechanical) discussion . . . group
the mixed moments in ascending order

1

〈x〉 〈p〉
〈x2〉 〈xp〉 〈p2〉

〈x3〉 〈x2p〉 〈xp2〉 〈p3〉
...

and suppose all those moments to be known; one is then in position to construct

M(α, β) ≡
∞∑

k=0

1
k!

(
i
�

)k
{ k∑

n=0

(
k
n

)〈
xnpk−n

〉
βnαk−n

}

=
∞∑

k=0

1
k!

(
i
�

)k〈
(αp + βx)k

〉
=

〈
e

i
�
(αp+βx)

〉
=

∫∫
e

i
�
(αp+βx)P (x, p)dxdp (73.1)

Immediately

P (x, p) = 1
h2

∫∫ 〈
e

i
�
(αp+βx)

〉︸ ︷︷ ︸ e−
i
�
(αp+βx)dqdy (73.2)

moment data
〈
xmpn

〉
resides here

so M(α, β)—the moment generating function or “characteristic function,” as it
is called—is simply the Fourier transform of the distribution function.59

The idea now is to put that train of thought to quantum mechanical work.
Immediately we are led—were, in effect, led already at (21)—to write

Pψ(x, p) = 1
h2

∫∫
Mψ(α, β)e−

i
�
(αp+βx)dαdβ (74)

Mψ(α, β) ≡ (ψ|e i
�
(αp+β x)|ψ) = (ψ|E(α, β)|ψ) (75)

which establishes an intimate connection between the quantum theory of
moments and the Weyl–Wigner formalism. Evidently

E(α, β) =
∞∑

k=0

1
k!

(
i
�

)k
{ k∑

n=0

Mk−n,nαk−nβn
}

(76)

Mm,n ≡
∑

all orderings

m p -factors and n x-factors (77)

= sum of
(

m+n
n

)
terms altogether

59 We note in passing that if x and p are statistically independent then〈
e

i
�
(αp+βx)

〉
=

〈
e

i
�

αp
〉〈

e
i
�

βx
〉
, and we recover P (x, p) = f(x)g(p).
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To the claim that quantum mechanics admits of formulation as a “theory of
interactive moments” one natural response would be “Moments of what?” The
momental quantum mechanics of oscillators (discussed previously) suggests one
answer: “Moments of the operators which enter into the ‘algebraic completion’
of the operator of initial interest.” But the result just achieved suggests another
—complementary—answer: “The elements of the momental set

{
〈Mm,n〉

}
,”

where the primitive operators Mm,n of low order are displayed below:

M0,0 = 1

M1,0 = p

M0,1 = x

M2,0 = pp

M1,1 = px + xp

M0,2 = xx

M3,0 = ppp

M2,1 = ppx + pxp + xpp

M1,2 = pxx + xpx + xxp

M0,3 = xxx

...

The relation of those observables to their classical counterparts can be described

1
number of termsMm,n ←−−−−−−−−

Weyl
pmxn

We began with an interest—Ehrenfest’s interest—in the quantum
dynamical motion of only a pair of moments (〈x〉 and 〈p〉), but from the
structure of (68) acquired an enforced collateral interest in mixed moments
of all orders. Here I explore implications of some commonplace wisdom:

When one has interest in properties of an infinite set of objects, it
is often simplest and most illuminating to look not to the objects
individually but to their generating function.

I look now, therefore, to the dynamical properties that the “Moyal function”

Mψ(α, β; t) ≡ (ψ|E(α, β)|ψ) = 〈E(α, β)〉

acquires from those of |ψ). Immediately

∂
∂tMψ(α, β; t) = 1

i� 〈 [E(α, β), H]〉 (78)
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One might use

H←−−−−−
Weyl

H(x, p) =
∫∫

h(α′, β ′)e
i
�
(α′p+β ′x)dα′dβ ′

to obtain

∂
∂tMψ(α, β; t) = 1

i�

∫∫
h(α′, β ′)〈 [E(α, β), E(α′, β ′)]〉dα′dβ ′

and then this corollary of (9.2)

[E(α, β), E(α′, β ′)] = 2i sinϑ · E(α + α′, β + β ′)
ϑ ≡ 1

2�
(αβ ′− βα′)

to be led, after a couple of lines, to a statement

∂
∂tMψ(α, β; t) =

∫∫
T(α, β;α′, β ′) ·Mψ(α′, β ′; t)dα′dβ ′ (79)

T(α, β;α′, β ′) ≡ 2
�
h(α′− α, β ′− β) sin

(
αβ ′−βα′

2�

)
reminiscent of a previously reported description20 of ∂

∂tPψ(x, p; t)—both of
which are reminiscent of

∂
∂t (x|ψ) =

∫
(x|H|x′)dx′(x′|ψ)

Equation (79) is equivalent to a giant system of coupled first-order differential
equations in the mixed moments of all orders; it asserts that the time derivatives
of those moments are linear combinations of their instantaneous values, and that
it is the responsibility of the Hamiltonian to answer the question “What linear
combinations?” and thus to distinguish one dynamical system from another.
But (79), while of theoretical interest, is awkward to use in specific cases: it is
often advantageous to work directly from (78).

To illustrate how that is done, we look again to the harmonic oscillator,
where (78) gives

∂
∂tMψ(α, β; t) = 1

i�

〈
1

2m [E(α, β), p2 ] + 1
2mω2 [E(α, β), x2 ]

〉
= 1

i�

〈{
1

2m

(
− 2�

i β ∂
∂α

)
+ 1

2mω2
(

+ 2�

i α ∂
∂β

)}
E(α, β)

〉
=

{
1
mβ ∂

∂α −mω2α ∂
∂β

}
Mψ(α, β; t) (80.1)

↓
= 1

mβ ∂
∂αMψ(α, β; t) in the “free particle limit” (80.2)

Explicit expansion of the expression on the left gives

∂
∂tMψ(α, β) = ∂

∂t

{
〈1〉+ i

�

[
α〈p〉+ β〈x〉

]
+ 1

2

(
i
�

)2[
α2〈p2〉+ αβ〈px + xp〉+ β2〈x2〉

]
+ · · ·

}
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while expansion of the expression on the right gives{
1
mβ ∂

∂α −mω2α ∂
∂β

}
Mψ(α, β)

= i
�

[
1
mβ〈p〉 −mω2α〈x〉

]
+ 1

2

(
i
�

)2[ 1
m2αβ〈p2〉+

(
1
mβ2 −mω2α2

)
〈px + xp〉 −mω22αβ〈x2〉

]
+ · · ·

Term-by-term identification gives rise to a system of equations

α1 : d
dt 〈p〉 = −mω2〈x〉

β1 : d
dt 〈x〉 = 1

m 〈p〉
α2 : d

dt 〈p
2〉 = −mω2〈xp + px〉

αβ : d
dt 〈xp + px〉 = 2

m 〈p
2〉 − 2mω2〈x2〉

β2 : d
dt 〈x

2〉 = 1
m 〈xp + px〉

...

which in the “free particle limit” become

α1 : d
dt 〈p〉 = 0

β1 : d
dt 〈x〉 = 1

m 〈p〉
α2 : d

dt 〈p
2〉 = 0

αβ : d
dt 〈xp + px〉 = 2

m 〈p
2〉

β2 : d
dt 〈x

2〉 = 1
m 〈xp + px〉

...

These are precisely the results achieved earlier by other means. It seems, on
the basis of such computation, fair to assert that equations of type (80) provide
a succinct expression of Ehrenfest’s theorem in its most general form.

In an essay previously cited58 I discuss how (at least in favorable cases) one
might undertake to solve partial differential equations of the class typified by
(80). Notice that such equation have this in common with the Hamilton-Jacobi
equation: both permit populations of coupled ordinary differential equations to
be cast as solitary partial differential equations (“field equations,” if you will). I
allude here to no mere superficial formal similarity, but to what is in fact a deep
physical interconnection . . .but must reserve for another occasion the argument
in defense of that claim.

To summarize: I do not claim that one should look upon quantum theory as
a “theory of interactive (or coupled) moments,” only that it is possible, and that
the exercise does serve (i) to expose the seldom-remarked fact that the quantum
motion of moments is, to a large extent, universal/state-independent . It serves
also (ii) to bring spontaneously into focus the importance of Moyal’s most
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distinctive contribution to the phase space formulation of quantum mechanics,
which by

P (x, p)←−−−−−−−−−→
Fourier

M(α, β)

lies “on the other side of the Rue de Fourier” from Wigner’s own seminal
contribution: moment theory leads back in a fairly natural way to the whole
Weyl-Wigner apparatus.

It would be of interest, on another occasion, to look to examine properties
of the Husimi transform of Moyal’s function M(α, β); i.e., to look to the closure
of the scheme

P (x, p)←−−−−−−−−−→
Fourier

M(α, β)
|
| Husimi

↓
PPP (x, p)←−−−−−−−−−→

Fourier
MMM(α, β)

Wigner-like distributions on “finite-dimensional phase spaces.” Let

f =




f1

f2
...

fx
...

fn




and g =




g1

g2
...
gp

...
gn




be n-dimensional “probability vectors;” i.e., number sets whose non-negative
elements are constrained to satisfy

∑
x fx =

∑
p gp = 1. Use that material to

construct the dyadic

P0 ≡ ‖P0(x, p)‖ ≡ f g T =




f1g1 f1g2 . . . f1gp . . . f1gn

f2g1 f2g2 . . . f2gp . . . f2gn

...
...

...
...

fxg1 fxg2 . . . fxgp . . . fxgn

...
...

...
...

fng1 fng2 . . . fngp . . . fngn




Look upon P0(x, p) as a description of how duplex events
{
x, p

}
are distributed

on a discrete n× n phase space. The product structure of P0(x, p) = fx · gp

signifies that x and p are independent random variables. Now let C = ‖cxp‖ be
an n×n matrix with the property that∑

x

cxp = 0 (all p) and
∑

p

cxp = 0 (all x)
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Such a matrix might be constructed by (i) writing




a1 a2 a3 . . . an

a2

a3
...

an




and requiring that
∑

i ai = 0; then (ii) writing




a1 a2 a3 . . . an

a2 b2 b3 . . . bn

a3 b3
...

...
an bn




and requiring of the b ’s that the elements in the second row sum to zero; (iii)
continuing in that wise to the construction of


a1 a2 a3 . . . an

a2 b2 b3 . . . bn

a3 b3 c3 . . . cn
...

...
...

...
an bn cn zn




and finally (iv) subjecting the rows (ditto and independently, the columns) to
arbitrary permutations. Finally construct

P ≡ ‖P (x, p)‖ = P0 + C = ‖fxgp + cxp‖

Evidently ∑
x

∑
p

P (x, p) = 1 (81)

and the associated marginal distributions∑
p

P (x, p) = fx and
∑

x

P (x, p) = gp (82)

are (compare (24)) good upstanding distribution functions. But not so P (x, p)
itself, which—depending upon the values ascribed to the elements of C—can
assume non-positive values!

All of which can be made quite explicit in the case n = 2, to which I
henceforth limit my attention. Write

f =
(

f1

f2

)
=

(
X

1−X

)
and g =

(
g1

g2

)
=

(
P

1− P

)
: 0 � X, P � 1
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Then

P =


 XP + c X(1− P )− c

(1−X)P − c (1−X)(1− P ) + c


 (83)

and the

“correlation matrix” ≡ ‖P (x, p)− fxgp‖ =
(

c −c
−c c

)
= C

If, in particular, we set X = 0.2 and P = 0.7 we have

f =
(

0.2
0.8

)
, g =

(
0.7
0.3

)
, P =

(
0.14 + c 0.06− c
0.56− c 0.24 + c

)
All elements of P lie all on the unit interval [0, 1], and are therefore interpretable
as ordinary “probabilities,” if and only if −0.14 � c � +0.06. But relaxation of
that constraint does violence neither to the normalization condition (81) nor to
a probabilistic interpretation of the associated marginal distributions (82). The
latter conditions would be preserved and the elements of P would all lie on the
expanded unit interval [−1,+1] if we required of c only that −0.44 � c � +0.76.
We might, in particular, set c = 0.36 to obtain a discrete bivariate distribution
(better: “quasi-distribution”)

P =
(

P11 P12

P21 P22

)
=

(
0.5 −0.3
0.2 0.6

)
which displays all (or at any rate many) of the properties most characteristic
of Wigner distributions. From (see again (34))

(sum of the elements of P
2) = 0.38 < (sum of the elements of P) = 1

we might infer that P refers to some kind of a “mixture,” but leave in suspension
the precise meaning of that conclusion.

Preceding remarks were motivated by aspects of the discussion to which I
now turn:

Feynman on “negative probability” and Bell’s theorem. In  Richard Feynman
(–) was invited to give the keynote address at an MIT conference
on the “Physics of Computation.” The published text of his remarks on that
occasion60 established Feynman as a visionary founding father in the expanding
field of “quantum computation,” and is of interest to us for several reasons:
• In his §5 alludes—for the only time in print, so far as I am aware—to the

Wigner function P (x, p), and indicates that he considers the fact that
P (x, p) becomes sometimes negative to lie at the very core of quantum
mechanics.

60 “Simulating physics with computers,” International J. of Theo. Phys. 21,
467 (1982). The paper (together with a rich collection of kindred papers) has
been reprinted in Feynman & Computation: Exploring the Limits of Computers
(), which was edited by A. J. G. Hey.
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• To place himself in position to discuss that fact in simplest possible terms
he pulls out of his hat the matrix

PFeynman =
(

0.6 −0.1
0.3 0.2

)

and observes that, though it contains a negative element, it does possess
the properties (81/82) exhibited by all polite bivariate distributions.61

Feynman’s motivation is multi-stranded, and so are his conclusions (which
include an admission that he is “not sure there’s no real problem” with quantum
mechanics!). I propose to examine just a couple of those strands.

Feynman had developed in interest in the physical principles which limit the
miniaturization of devices already by the mid-’s. In an after-dinner speech
presented at a  meeting of the American Physical Society62 he offered $1000
prizes to “to the first guy who makes an operating electric motor. . . only 1/64th

inch cube” and “to the first guy who can take the information on a page of a
book and put it on an area 1/25,000 smaller in linear scale in such a manner
that it can be read by an electron microscope.” The first prize was won within
a year by one Bill McLellan, whose motor was .006

′′
in diameter and developed

a reported 10−6 horsepower.63 That semi-whimsical interest in microdevices
ripened fairly naturally into an interest in quantum robotics and (especially)
quantum computation.

A few pages prior to the presentation of PFeynman Feynman had posed the
question: “Can quantum systems be probabilistically simulated by a classical
computer?” The question motivated him to sketch how quantum mechanics
might be written so as to look as classical as possible, and led him to a broadly
Wigneresque conception of quantum essentials. He concludes his §6 with these
words:

61 We, by the way, find the latter circumstance not at all surprising, since

PFeynman = (83) with X = 0.5, P = 0.9, c = 0.15

62 The text is reprinted as “There’s plenty of room at the bottom” in Hey’s
remarkable anthology (just cited), and served to establish Feynman as a
founding father also of what has come to be called “nanotechnology.”

63 If those numbers are to be believed, then McLellan’s motor had a power
density of 4.6 hp/in3, which is about 104 higher than is available in motors you
can walk into a store and buy. When I, as a graduate student, first learned
of Feynman’s challenge I remarked to a friend that “the way to make such a
motor is to make it out of meat,” so had special interest when, shortly thereafter,
biologists worked out the design of the “motor” that spins microbial flagella,
the tails of spermatozoa, etc. By the way: text reduction at the scale stipulated
by Feynman would permit the entire Encyclopedia Britanica to be printed on
the head of a pin, and was first accomplished by Tom Newman, a graduate
student at Stanford, in .
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“But [some of the elements of PFeynman]are not positive, and therein
lies the great difficulty. The only difference between a probabilistic
classical world and the equations of the quantum world is that
somehow or other it appears as if the probabilities would have to
go negative, and that we do not know, as far as I know, how to
simulate. Okay, that’s the fundamental problem. I don’t know the
answer to it, but I wanted to explain that if I try my best to make
the equations look as near as possible to what would be imitable by
a classical probabilistic computer, I get into trouble.

At the beginning of his §7 he continues
I would like to show you why such minus signs cannot be avoided
[my emphasis], or at least that you have some sort of difficulty.

Feynman’s argument seems to me to be, in some respects, a bit goofy. At
its heart lies Bell’s theorem, which he reconstructs without mention of Bell,64

and in a way which (partly because the mathematics is developed verbally) I
find much less clear than Bell’s own demonstration.65 Bell’s accomplishment
was to establish that certain specific statements that follow from orthodox
quantum mechanics (statements which refer to the entangled states of 2-state
systems, in the tradition of EPR—statements which have since been found to
conform to the observational facts) cannot be replicated by any deterministic
local hidden variable theory in which ordinary probability theory is used to
manage implications of the circumstance that the hidden variables themselves
remain unknown/random. Feynman (recall the title60 of his talk) concludes on
this basis that no classical computer can be entirely successful as a simulator
of quantum mechanics.66 But of more immediate interest to us is a remark
which he drops in passing: “Such a formula cannot reproduce the quantum
results if [certain details built into Bell’s/Feynman’s argument refer to] real
probabilities . . .but is easy if they are ‘probabilities’—[allowed to become]
negative [under] some conditions . . . ”

64 Perhaps Feynman considered that his introductory “You probably have all
heard of this example of the EPR paradox, but I will explain. . . ” made explicit
citation unnecessary. Or perhaps he is hinting that he had discovered “Bell’s
theorem”—by then eighteen years old—independently. Or perhaps there was
some personal antagonism; I notice that J. S. Bell, in the twenty-two papers
reproduced in his Speakable and unspeakable in quantum mechanics (), is
unfailingly generous in recognizing those to whom he is indebted, but cites
Feynman only once—glancingly.

65 For a lucid reproduction of Bell’s argument—stripped of a few fussy details,
illuminated by some commentary—see Griffiths’ §A.2. Bell’s original paper
(“On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964)) is
reprinted in Speakable. . .

66 This conclusion inspires the speculation that “quantum computers” may
possess capabilities beyond the reach of classical computers: “. . . it seems that
the laws of physics present no barrier to reducing the size of computers until
bits are the size of atoms, and quantum behavior holds dominant sway.”
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Getting down to work: Feynman speaks of “photons,” and uses birefringent
calcite crystals68 to distinguish linearly polarized ↔ states from �; Griffiths
looks to the respective spins of the electron/positron produced in a reaction of
the type e− ←− π0 −→ e+; Bell asks us to “consider a pair of spin one-half
particles formed somehow in a singlet spin state and moving freely in opposite
directions.” Those distinctions are of no deep significance; I prefer to work in
Bell’s more generic language.

Feynman, Griffiths and Bell assume their readers to be familiar with a
quantum mechanical result (the result which it is the assigned business of hidden
variable theory to account for) which we must, as a preparatory set, digress
to acquire. Let S1 and S2 be 2-state systems, from which we assemble the
composite system S = S1⊗S2. We propose, in the EPR tradition, to examine
S first with

A ≡ (a1σσ1 + a2σσ2 + a3σσ3)⊗ I : a2
1 + a2

2 + a2
3 = 1 (84.1)

—which in the absence of entanglement would be to record a property of S1—
and then with69

B ≡ I⊗ (b1σσ1 + b2σσ2 + b3σσ3) : b2
1 + b2

2 + b2
3 = 1 (84.2)

Recalling from (1–7) the conventional definitions of the Pauli matrices, then
using Mathematica’s

Outer[Times, first matrix, second matrix]//MatrixForm

to work out the Kronecker products, we find

A =




a3 0 a1−ia2 0
0 a3 0 a1−ia2

a1+ia2 0 −a3 0
0 a1+ia2 0 −a3


 (85.1)

B =




b3 b1−ib2 0 0
b1+ib2 −b3 0 0

0 0 b3 b1−ib2

0 0 b1+ib2 −b3


 (85.2)

Both matrices are manifestly Hermitian, and both (use Eigenvalues[matrix]
and aaa···aaa = bbb···bbb = 1) have spectra which can be described

{
− 1,−1,+1,+1

}
.

Entrusting the heavy labor to Mathematica we are led at length to the spectral
representations of A and B :

A = (+1)P
A
+ + (−1)P

A
− (86.1)

B = (+1)P
B
+ + (−1)P

B
− (86.2)

68 See E. Hecht & A. Zajac, Optics () §§8.4.1–3.
69 I write A and B where by former convention—introduced at (1–64)—I

would have written AAA and BBB to emphasize the 4-dimensionality of the matrices
in question.
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where

P
A
+ ≡




1
2 (1 + a3) 0 + 1

2 (a1 − ia2) 0

0 1
2 (1 + a3) 0 + 1

2 (a1 − ia2)

+ 1
2 (a1 + ia2) 0 1

2 (1− a3) 0

0 + 1
2 (a1 + ia2) 0 1

2 (1− a3)


 (87.1)

P
A
− ≡




1
2 (1− a3) 0 − 1

2 (a1 − ia2) 0

0 1
2 (1− a3) 0 − 1

2 (a1 − ia2)

− 1
2 (a1 + ia2) 0 1

2 (1 + a3) 0

0 − 1
2 (a1 + ia2) 0 1

2 (1 + a3)


 (87.2)

P
B
+ ≡




1
2 (1 + b3) + 1

2 (b1 − ib2) 0 0

+ 1
2 (b1 + ib2) 1

2 (1− b3) 0 0

0 0 1
2 (1 + b3) + 1

2 (b1 − ib2)

0 0 + 1
2 (b1 + ib2) 1

2 (1− b3)


 (88.1)

P
B
− ≡




1
2 (1− b3) − 1

2 (b1 − ib2) 0 0

− 1
2 (b1 + ib2) 1

2 (1 + b3) 0 0

0 0 1
2 (1− b3) − 1

2 (b1 − ib2)

0 0 − 1
2 (b1 + ib2) 1

2 (1 + b3)


 (88.2)

I need not record the straightforwardly tedious details that led to the preceding
statements, for one can readily verify after the fact that the matrices thus
defined do possess all the required properties:
• P

A
+ and P

A
− are Hermitian

• each is projective: P
A
+ P

A
+ = P

A
+ , P

A
− P

A
− = P

A
−

• they are orthogonal and complementary: P
A
+ P

A
− = O and P

A
+ + P

A
− = I

• they comply with (86.1): P
A
+ − P

A
+ = A

• each has spectrum
{
1, 1, 0, 0

}
, so projects onto a 2-space

and the same can be said of P
B
+ and P

B
− . All this Mathematica would be very

quick to confirm. With that preparation behind us . . .we assume S to have
been placed “somehow” in a singlet state—a state, that is, to say, with the
property that it is killed by both SSS

2 and SSS3; we found at (1–78.2)/(1–85) that
the state in question can be described

|singlet) = 1√
2




0
+1
−1
0


 = 1√

2
(↑↓ − ↓↑)

Examination of such a state with our A -meter yields

P
A
+ |singlet) ≡ |A+) when the A -meter registers +1

P
A
− |singlet) ≡ |A−) when the A -meter registers −1
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By quick calculation

|A+) = 1
2
√

2



−(a1 − ia2)
+(1 + a3)
−(1− a3)

+(a1 + ia2)


 and |A−) = 1

2
√

2




+(a1 − ia2)
+(1− a3)
−(1 + a3)
−(a1 + ia2)




We observe that

|A+) + |A−) = |singlet) and (A+|A−) = 0

—which are gratifying but expected—and

(A+|A+) = (A−|A−) = 1
2

from which we learn that the A -meter registers +1 else −1 with equal liklihood
for all assignments of aaa ; the singlet state is—literally, if we imagine ourselves to
be speaking about a spin system; formally if we assign a more abstract meaning
to the phrase “2-state system”—“rotationally invariant.”

The vectors |A±) must be restored to unit length (multiplied by
√

2) before
they become proper state descriptors. That done, we activate the B-meter,
which—since it looks at one or another of two states, and in each case prepares
one or another of two states—requires that we consider four distinct cases:

P
B
+

√
2|A+) ≡ |A+ ,B+) : ‖|A+ ,B+)‖2 = 1

2 (1− aaa···bbb)

P
B
−
√

2|A+) ≡ |A+ ,B−) : ‖|A+ ,B−)‖2 = 1
2 (1 + aaa···bbb)

P
B
+

√
2|A−) ≡ |A− ,B+) : ‖|A− ,B+)‖2 = 1

2 (1 + aaa···bbb)

P
B
−
√

2|A−) ≡ |A− ,B−) : ‖|A− ,B−)‖2 = 1
2 (1− aaa···bbb)

The vectors |A± ,B±) are fairly complicated; Mathematica is happy enough to
write them out, but it would serve no purpose to do so here (and, once again,
they must be normalized before they become descriptors of the final state of
the composite system). We arrive thus at this generalization of (1–86.2):

if “+” then

{
“+” with probability 1

2 (1− aaa···bbb)

“−” with probability 1
2 (1 + aaa···bbb)

if “−” then

{
“+” with probability 1

2 (1 + aaa···bbb)

“−” with probability 1
2 (1− aaa···bbb)




(89)

If we set aaa = bbb then we recover precisely the situation (1–86.2) which Einstein
et al found so perplexing. Bell, however, was looking beyond EPR’s perplexity
to another issue (the hidden variable question), and had the wit to allow aaa and
bbb to be specified independently/arbitrarily. He noticed more particularly that
the meter readings will be

coincident (++ or −−) with probability 1
2 (1− aaa···bbb)

anticoincident (+− or −+) with probability 1
2 (1 + aaa···bbb)
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and that the

averaged product of the meter readings = 1
2 (1− aaa···bbb)− 1

2 (1 + aaa···bbb)
= −aaa···bbb (90)
≡ − cos θ

This is the quantum mechanical result which Bell/Feynman are content simply
to report, and which Griffiths assigns as ∗∗∗∗∗∗∗∗∗Problem 4.44.70

Now to Bell’s main argument: Suppose some “hidden variables” λ lurk
within the physics of S, where they enter as arguments into a function

A(aaa, λ) =
{

+1 at some points in λ-space
−1 on the complementary point set

70 When I asked David how he himself would go about solving Problem 4.44 he
(with the disclaimer that his solution was “most inelegant”) promptly supplied
the following: “We may as well choose axes so that aaa lies along the z axis and
bbb is in the xz plane. Then S(1)

a = S(1)
z and S(2)

b = cos θS(2)
z + sin θS(2)

x . We are
to calculate 〈00|S(1)

a S(2)

b |00〉. But

S(1)
a S(2)

b |00〉 = 1√
2

{
S(1)

z (cos θS(2)
z + sin θS(2)

x )(↑↓ − ↓↑)
}

= 1√
2

{
(Sz↑)(cos θSz↓ + sin θSx↓)
− (Sz↓)(cos θSz↑ + sin θSx↑)

}
= 1√

2

{
�

2↑ (cos θ(−�

2↓) + sin θ(�

2↑))
−(−�

2↓)(cos θ(�

2↑) + sin θ(�

2↓))
}

by [4.145]

= �
2

4

{
cos θ 1√

2
(− ↑↓ + ↓↑) + sin θ 1√

2
(↑↑ + ↓↓)

}
= �

2

4

{
− cos |00〉+ sin θ(|11〉+ |1−1〉)

}
So

〈S(1)
a S(2)

b 〉 = 〈00|S(1)
a S(2)

b |00〉 = �
2

4 〈00|
{
− cos θ|00〉+ sin θ(|11〉+ |1−1〉)

}
= −�

2

4 cos θ〈00|00〉+ 0 by orthogonality

= −�
2

4 cos θ QED”

David’s argument—which is in a well-established tradition—presumes skill with
the ↑↓-notation (which I, for some reason, have never been able to acquire), but
is so brief as to make my own argument (which I would have been reluctant to
undertake without the assistance of Mathematica) look longwindedly pedantic.
My argument makes no special assumption (such as David makes at the outset),
and makes clear its reliance upon quantum mechanical first principles, but
presumes familiarity with the Kronecker product approach to composite system
theory. We are agreed that Bell himself probably argued that the right side
of (90) has necessarily on transformation-theoretic grounds to be of the form
p + qaaa···bbb, and used a couple of special cases (EPR with bbb = ±aaa?) to enforce
p = 0 and q = −1.
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that deterministically directs S1 how to interact with the A -meter, and a second
function

B(bbb, λ) =
{

+1 at some points in λ-space
−1 on the complementary point set

that similarly controls the interaction of S2 how to interact with the B-meter.
EPR tell us that

B(aaa, λ) = −A(aaa, λ) : all λ

The value of λ is assumed to be “known” precisely to S, but only statistically
to us: ρ(λ).71 Within the framework thus established, we have

P (aaa, bbb) ≡ averaged product of the meter readings

=
∫

ρ(λ)A(aaa, λ)B(bbb, λ) dλ (�)

= −
∫

ρ(λ)A(aaa, λ)A(bbb, λ) dλ

Therefore, for any ccc,

P (aaa, bbb)− P (aaa, ccc) = −
∫

ρ(λ)
{

A(aaa, λ)A(bbb, λ)−A(aaa, λ)A(ccc, λ)
}

dλ

which by [A(bbb, λ)]2 = (±1)2 = 1 can be expressed

= −
∫

ρ(λ)
{

1−A(bbb, λ)A(ccc, λ)
}

A(aaa, λ)A(bbb, λ) dλ

giving

∣∣P (aaa, bbb)− P (aaa, ccc)
∣∣ =

∣∣∣∣∣
∫

ρ(λ)
{

1−A(bbb, λ)A(ccc, λ)
}

︸ ︷︷ ︸ A(aaa, λ)A(bbb, λ) dλ

∣∣∣∣∣
non-negative (��)

�
∫

ρ(λ)
{

1−A(bbb, λ)A(ccc, λ)
} ∣∣A(aaa, λ)A(bbb, λ)

∣∣︸ ︷︷ ︸ dλ

unity

whence ∣∣P (aaa, bbb)− P (aaa, ccc)
∣∣ � 1 + P (bbb, ccc) (91)

which is the celebrated Bell inequality .

Were (91) to hold quantum mechanically we would, by (90), have∣∣aaa···(bbb− ccc)
∣∣ + bbb···ccc � 1 (92)

Bell noticed that it is possible to select
{
aaa, bbb, ccc

}
so that (92) is violated ; it is

possible, in other words, to devise quantum mechanical situations for which no

71 How we would come to know even ρ(λ)-much about the hidden variables
is an interesting question, but one which, for the purposes at hand, need not
concern us.



70 Weyl transform & the phase space formalism

0

2

4

6 0

2

4

6

1
1.1
1.2
1.3
1.4
1.5

0

2

4

6

Figure 14: Indication of the points in (β, γ)-space where (93)
is violated. β runs ↘ , γ runs ↗. The specific command was

Plot3D[Sqrt[(Cos[β]-Cos[γ])2]+Cos[γ−β], {β, 0, 2π},
{γ, 0, 2π}, PlotRange->{1.0,1.5}, PlotPoints->50]

Note the
√

square technique used to mimic the effect of absolute
value bars; also the use of PlotRange to eclipse the points where
(93) is not violated .

hidden variable theory (within the broad class of such theories contemplated by
Bell) can account. A single example serves to establish the point: Bell/Griffiths
assume

{
aaa, bbb, ccc

}
to be co-planar, aaa ⊥ bbb, and ccc to be the bisector of that right

angle; then (92) reads
∣∣0 − 1√

2

∣∣ + 1√
2

=
√

2 � 1, which is absurd. To gain a
somewhat more comprehensive view of the situation, I retain the assumption
that

{
aaa, bbb, ccc

}
are co-planar and write aaa···bbb = cos β, aaa···ccc = cos γ. Then (92) reads

| cos β − cos γ |+ cos(γ − β) � 1 (93)

Points where this instance of Bell’s inequality is violated are shown in the figure.

Feynman observed that the force of Bell’s argument would be lost if at (��)
one allowed ρ(λ) to assume negative values. To make the point notationally
more vivid he assigns distinct sets α and β of hidden parameters to S1 and S2.
In place of (�) he writes

P (aaa, bbb) =
∫∫

ρ(α, β)A(aaa, α)B(bbb, β) dαdβ

and seems speculatively prepared to assign Wigner-like properties to ρ(α, β).
His point seems to be that when one looks closely to the quantum/classical
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connection one can expect to encounter “negative probability” . . . if not on one
side of the equation, then on the other.72

Feynman admits to being quite at a loss when it comes to the question
“What does ‘negative probability’ actually mean?” but appears to regard its
occurance as a symptom of other, deeper problems. Quoting from his concluding
remarks

“It seems to be almost ridiculous that you can squeeze [the difficulty
of quantum mechanics] to a numerical question that one thing is
bigger than another. But there you are— . . . It is interesting to
try to discuss the possibilities. I mentioned something about the
possibility of time—of things being affected not just by the past, but
also by the future, and therefore that our probabilities are in some
sense ‘illusory.’ We only have the information from the past, and
we try to predict the next step, but in reality it depends upon the
near future which we can’t get at, or something like that. A very
interesting question is the origin of the probabilities in quantum
mechanics. . . ”

The notion that we might have to adopt an altered view of time itself is being
advanced here by the physicist who taught the world to look upon positrons
as “electrons running backward in time,”73 and who collaborated with John
Wheeler to develop the “absorber theory”74 which assigns equal weight to the
advanced and retarded potentials of classical electrodynamics.75

Or perhaps the problem has to do with our still-imperfect understanding

72 A somewhat related point was made by Bell himself, a few years later: see
“EPR correlations and EPW distributions” (), which is reprinted as the
penultimate essay in Speakable . . . The paper begins with these words

It is known that with Bohm’s example of EPR correlations
involving particles with spin, there is an irreducible non-locality
[which] cannot be removed by the introduction of hypothetical
variables unknown to ordinary quantum mechanics. How is it with
the original EPR example involving two particles of zero spin? Here
we will see that the Wigner phase space distribution illuminates the
problem.

and continues to relate the occurance of negative probability to violation of a
certain inequality. The “EPW” in the title is, of course, a cute reference, to
E. P. Wigner, to whom the essay is dedicated.

73 “The theory of positrons,” Phys. Rev. 76, 749 (1949).
74 See F. Rohrlich, Classical Charged Particles () §7.2 for brief discussion

and references.
75 As I student I was struck by the fact that the temporal unidirectionality

of the diffusion equation can, in reference to a simple random walk model, be
traced to the operation of ordinary probability theory. I asked: “Can ‘negative
probability’ be used to construct a theory of backward diffusion?” The question
has borne no fruit, but I admit to being still susceptible to its vague charm.
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of what we should mean when we refer to the “state” of a quantum system.
Bell has many times stressed, and so have many others, that in this area our
axiomatic principles speak with the appearance of a mathematical precision
much sharper than the facts of the matter are able to support. Perhaps we
should adopt the principle that

If it talks “negative probability” it ain’t a state

and look to Husimi for guidance toward the implementation of that principle.

Concluding remarks. I have reviewed the essentials of the Weyl–Wigner–Moyal
“phase space formulation of non-relativistic quantum mechanics,” and tried to
indicate why the existence of such a formalism is worthy of notice. And I have
explored a few of the theory’s nooks and crannies. But the discussion could be
much extended, for I have said not a word about (for example)
• Wigner functions on phase spaces of n > 2 dimensions
• why the subject is of special interest to chemical physicists
• applications to quantum optics
• applications to the study of quantum chaos.

For all of that and more I must refer my reader to the vast literature.

A few pages ago I finally received mail from the University of Minnesotta
library which permitted me for—the first time—actually to examine Husimi’s
long neglected but recently much cited “Some formal properties of the density
matrix.”41 The paper turns out to be a 50-page critical review of essentially
all that had been learned about the density matrix in the dozen years since
its invention. The author has an evidently deep familiarity with the European
(especially the German) literature of the ’s; he cites many/most of major
figures of the period (Dirac, von Neumann, Courant & Hilbert, Szegö, Peierls,
Delbrück, Uhlenbeck, Fock . . .but the work of not a single Japanese physicist),
but—curiously—seems ignorant of the work of Wigner (work9 which Wigner in
 did not claim had anything to do with the density matrix), work which
Husimi is motivated in his §5 to sort of (but only sort of) re-invent. Buried in
that discussion is the work for which he is now mainly remembered. I get the
impression that Kôdi Husimi was an exceptionally capable young theoretical
physicist, yet he was, so far as I am aware, never heard from again. I hope one
day to learn the circumstances of his life . . . and death.


